8 research outputs found

    脂肪体キヌレニン代謝による遠隔的組織修復制御機構の解明

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 三浦 正幸, 東京大学教授 新井 洋由, 東京大学教授 楠原 洋之, 東京大学准教授 河野 望, 東京大学講師 福山 征光University of Tokyo(東京大学

    Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism

    No full text
    Summary: Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration

    How tissue damage MET metabolism: Regulation of the systemic damage response

    No full text
    Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a “dual system” that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This “Extra View” aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms

    Methionine metabolism regulates pluripotent stem cell pluripotency and differentiation through zinc mobilization

    Get PDF
    ヒト多能性幹細胞におけるメチオニン代謝と亜鉛動態の関係性を解明 --培養液内の栄養が細胞分化のカギを握る--. 京都大学プレスリリース. 2022-07-27.Pluripotent stem cells (PSCs) exhibit a unique feature that requires S-adenosylmethionine (SAM) for the maintenance of their pluripotency. Methionine deprivation in the medium causes a reduction in intracellular SAM, thus rendering PSCs in a state potentiated for differentiation. In this study, we find that methionine deprivation triggers a reduction in intracellular protein-bound Zn content and upregulation of Zn exporter SLC30A1 in PSCs. Culturing PSCs in Zn-deprived medium results in decreased intracellular protein-bound Zn content, reduced cell growth, and potentiated differentiation, which partially mimics methionine deprivation. PSCs cultured under Zn deprivation exhibit an altered methionine metabolism-related metabolite profile. We conclude that methionine deprivation potentiates differentiation partly by lowering cellular Zn content. We establish a protocol to generate functional pancreatic β cells by applying methionine and Zn deprivation. Our results reveal a link between Zn signaling and methionine metabolism in the regulation of cell fate in PSCs

    Damage sensing mediated by serine proteases Hayan and Persephone for Toll pathway activation in apoptosis-deficient flies.

    No full text
    The mechanisms by which the innate immune system senses damage have been extensively explored in multicellular organisms. In Drosophila, various types of tissue damage, including epidermal injury, tumor formation, cell competition, and apoptosis deficiency, induce sterile activation of the Toll pathway, a process that requires the use of extracellular serine protease (SP) cascades. Upon infection, the SP Spätzle (Spz)-processing enzyme (SPE) cleaves and activates the Toll ligand Spz downstream of two paralogous SPs, Hayan and Persephone (Psh). However, upon tissue damage, it is not fully understood which SPs establish Spz activation cascades nor what damage-associated molecules can activate SPs. In this study, using newly generated uncleavable spz mutant flies, we revealed that Spz cleavage is required for the sterile activation of the Toll pathway, which is induced by apoptosis-deficient damage of wing epidermal cells in adult Drosophila. Proteomic analysis of hemolymph, followed by experiments with Drosophila Schneider 2 (S2) cells, revealed that among hemolymph SPs, both SPE and Melanization Protease 1 (MP1) have high capacities to cleave Spz. Additionally, in S2 cells, MP1 acts downstream of Hayan and Psh in a similar manner to SPE. Using genetic analysis, we found that the upstream SPs Hayan and Psh contributes to the sterile activation of the Toll pathway. While SPE/MP1 double mutants show more impairment of Toll activation upon infection than SPE single mutants, Toll activation is not eliminated in these apoptosis-deficient flies. This suggests that Hayan and Psh sense necrotic damage, inducing Spz cleavage by SPs other than SPE and MP1. Furthermore, hydrogen peroxide, a representative damage-associated molecule, activates the Psh-Spz cascade in S2 cells overexpressing Psh. Considering that reactive oxygen species (ROS) were detected in apoptosis-deficient wings, our findings highlight the importance of ROS as signaling molecules that induce the activation of SPs such as Psh in response to damage

    Remote solid cancers rewire hepatic nitrogen metabolism via host nicotinamide-N-methyltransferase

    Get PDF
    がんによって全身に不調が生じるのはなぜか? --がんをもつ個体の肝臓の異常に焦点をあてる--. 京都大学プレスリリース. 2022-06-16.Cancers disrupt host homeostasis in various manners but the identity of host factors underlying such disruption remains largely unknown. Here we show that nicotinamide-N-methyltransferase (NNMT) is a host factor that mediates metabolic dysfunction in the livers of cancer-bearing mice. Multiple solid cancers distantly increase expression of Nnmt and its product 1-methylnicotinamide (MNAM) in the liver. Multi-omics analyses reveal suppression of the urea cycle accompanied by accumulation of amino acids, and enhancement of uracil biogenesis in the livers of cancer-bearing mice. Importantly, genetic deletion of Nnmt leads to alleviation of these metabolic abnormalities, and buffers cancer-dependent weight loss and reduction of the voluntary wheel-running activity. Our data also demonstrate that MNAM is capable of affecting urea cycle metabolites in the liver. These results suggest that cancers up-regulate the hepatic NNMT pathway to rewire liver metabolism towards uracil biogenesis rather than nitrogen disposal via the urea cycle, thereby disrupting host homeostasis
    corecore