362 research outputs found
Measurement by wake momentum surveys at Mach 1.61 and 2.01 of turbulent boundary-layer skin friction on five swept wings
Measurement by wake momentum surveys at Mach 1.61 and 2.01 of turbulent boundary layer skin friction on five swept wing
Recommended from our members
A catenin-dependent balance between N-cadherin and E-cadherin controls neuroectodermal cell fate choices
Characterizing endogenous protein expression, interaction and function, this study identifies in vivo interactions and competitive balance between N-cadherin and E-cadherin in developing avian (Gallus gallus) neural and neural crest cells. Numerous cadherin proteins, including neural cadherin (Ncad) and epithelial cadherin (Ecad), are expressed in the developing neural plate as well as in neural crest cells as they delaminate from the newly closed neural tube. To clarify independent or coordinate function during development, we examined their expression in the cranial region. The results revealed surprising overlap and distinct localization of Ecad and Ncad in the neural tube. Using a proximity ligation assay and co-immunoprecipitation, we found that Ncad and Ecad formed heterotypic complexes in the developing neural tube, and that modulation of Ncad levels led to reciprocal gain or reduction of Ecad protein, which then alters ectodermal cell fate. Here, we demonstrate that the balance of Ecad and Ncad is dependent upon the availability of β-catenin proteins, and that alteration of either classical cadherin modifies the proportions of the neural crest and neuroectodermal cells that are specified
A catenin-dependent balance between N-cadherin and E-cadherin controls neuroectodermal cell fate choices
Characterizing endogenous protein expression, interaction and function, this study identifies in vivo interactions and competitive balance between N-cadherin and E-cadherin in developing avian (Gallus gallus) neural and neural crest cells. Numerous cadherin proteins, including neural cadherin (Ncad) and epithelial cadherin (Ecad), are expressed in the developing neural plate as well as in neural crest cells as they delaminate from the newly closed neural tube. To clarify independent or coordinate function during development, we examined their expression in the cranial region. The results revealed surprising overlap and distinct localization of Ecad and Ncad in the neural tube. Using a proximity ligation assay and co-immunoprecipitation, we found that Ncad and Ecad formed heterotypic complexes in the developing neural tube, and that modulation of Ncad levels led to reciprocal gain or reduction of Ecad protein, which then alters ectodermal cell fate. Here, we demonstrate that the balance of Ecad and Ncad is dependent upon the availability of β-catenin proteins, and that alteration of either classical cadherin modifies the proportions of the neural crest and neuroectodermal cells that are specified
Genomics-assisted breeding for crop improvement
Genomics research is generating new tools, such as functional molecular markers and informatics, as well as new knowledge about statistics and inheritance phenomena that could increase the efficiency and precision of crop improvement. In particular, the elucidation of the fundamental mechanisms of heterosis and epigenetics, and their manipulation, has great potential. Eventually, knowledge of the relative values of alleles at all loci segregating in a population could allow the breeder to design a genotype in silico and to practice whole genome selection. High costs currently limit the implementation of genomics-assisted crop improvement, particularly for inbreeding and/or minor crops. Nevertheless, marker-assisted breeding and selection will gradually evolve into ‘genomics-assisted breeding’ for crop improvement
Genomic Selection for Crop Improvement: An Introduction
Marker-assisted selection (MAS) exploits the markers associated with traits of interest for selecting lines with superior alleles for developing improved lines. However use of MAS is restricted to simple traits due to its inability to handle complex traits. Advancements in genomics technologies have been able to dramatically reduce the cost of genotyping, enabling the use of genome-wide marker data for selecting lines with higher breeding value. Genomic selection (GS), a modern breeding approach that uses genome-wide marker data to estimate the breeding value and has the potential to address the complex traits. GS exploits the genotyping and phenotyping data on a training population to train the prediction models to calculate the genomic estimated breeding value (GEBV). GS has the capability to reduce selection cycle duration and increase selection accuracy, intensity, efficiency, and gains per unit of time, thereby enhancing the rate of genetic gains. Availability of cost-effective genotyping platforms has enabled the cost-effective generation of large-scale genotyping data, facilitating the deployment of GS in several crop species. This chapter provides an introduction to the book, highlighting the basic and advanced principles of GS breeding and its applications for crop improvement
Genomic Selection for Crop Improvement: New Molecular Breeding Strategies for Crop Improvement
Genomic Selection for Crop Improvement serves as handbook for users by providing basic as well as advanced understandings of genomic selection. This useful review explains germplasm use, phenotyping evaluation, marker genotyping methods, and statistical models involved in genomic selection. It also includes examples of ongoing activities of genomic selection for crop improvement and efforts initiated to deploy the genomic selection in some important crops. In order to understand the potential of GS breeding, it is high time to bring complete information in the form of a book that can serve as a ready reference for geneticist and plant breeders
Ferret brain possesses young interneuron collections equivalent to human postnatal migratory streams.
The human early postnatal brain contains late migratory streams of immature interneurons that are directed to cortex and other focal brain regions. However, such migration is not observed in rodent brain, and whether other small animal models capture this aspect of human brain development is unclear. Here, we investigated whether the gyrencephalic ferret cortex possesses human-equivalent postnatal streams of doublecortin positive (DCX+) young neurons. We mapped DCX+ cells in the brains of ferrets at P20 (analogous to human term gestation), P40, P65, and P90. In addition to the rostral migratory stream, we identified three populations of young neurons with migratory morphology at P20 oriented toward: (a) prefrontal cortex, (b) dorsal posterior sigmoid gyrus, and (c) occipital lobe. These three neuronal collections were all present at P20 and became extinguished by P90 (equivalent to human postnatal age 2 years). DCX+ cells in such collections all expressed GAD67, identifying them as interneurons, and they variously expressed the subtype markers SP8 and secretagogin (SCGN). SCGN+ interneurons appeared in thick sections to be oriented from white matter toward multiple cortical regions, and persistent SCGN-expressing cells were observed in cortex. These findings indicate that ferret is a suitable animal model to study the human-relevant process of late postnatal cortical interneuron integration into multiple regions of cortex
Can genomics deliver climate-change ready crops?
Development of climate resilient crops with accelerating
genetic gains in crops will require integration of different
disciplines/technologies, to see the impact in the farmer’s field.
In this review, we summarize how we are utilizing our
germplasm collections to identify superior alleles/haplotypes
through NGS based sequencing approaches and how
genomics-enabled technologies together with precise
phenotyping are being used in crop breeding. Pre-breeding
and genomics-assisted breeding approaches are contributing
to the more efficient development of climate-resilient crops. It is
anticipated that the integration of several disciplines/
technologies will result in the delivery of climate change ready
crops in less time
Food security through translational biology between wheat and rice
Wheat and rice are the most important food crops in agriculture providing around 50% of all calories consumed in the human diet. While both are C3 species, the evolution and domestication of wheat and rice occurred in very different environments, resulting in diverse anatomical and metabolic adaptation. This review focuses on the current understanding of their adaptation in an agronomic context. The similarities and differences between wheat and rice are discussed, focusing on traits related to phenology, photosynthesis, assimilate partitioning, and lodging resistance, these being the main abiotic drivers of yield expression in most agro‐ecosystems. Currently, there are significant knowledge gaps in the major biological processes that account not only for differential adaption among cultivars within each species, but even between the two species. By addressing what is known as well as where gaps exist in a comparative context, this review aims to highlight translational research approaches that could provide insights into the genetic improvement of both crops
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
- …