2 research outputs found
Voluntary exercise does not increase gastrointestinal motility but increases spatial memory, intestinal eNOS, Akt levels, and Bifidobacteria abundance in the microbiome
The interaction between the gut and brain is a great puzzle since it is mediated by very complex mechanisms. Therefore, the possible interactions of the brain–exercise–intestine–microbiome axis were investigated in a control (C, N = 6) and voluntarily exercised (VE, N = 8) middle-aged rats. The endurance capacity was assessed by VO2max on the treadmill, spatial memory by the Morris maze test, gastrointestinal motility by EMG, the microbiome by 16S RNA gene amplicon sequencing, caveolae by electron microscopy, and biochemical assays were used to measure protein levels and production of reactive oxygen species (ROS). Eight weeks of voluntary running increased VO2max, and spatial memory was assessed by the Morris maze test but did not significantly change the motility of the gastrointestinal tract or production of ROS in the intestine. The protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) protein levels significantly increased in the intestine, while peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NFR1), SIRT1, SIRT3, nicotinamide phosphoribosyl transferase (NAMPT), and nuclear factor κB (NF-κB) did not change. On the other hand, voluntary exercise increased the number of caveolae in the smooth muscles of the intestine and relative abundance of Bifidobacteria in the microbiome, which correlated with the Akt levels in the intestine. Voluntary exercise has systemic effects and the relationship between intestinal Akt and the microbiome of the gastrointestinal tract could be an important adaptive response
The effects of long-term lactate and high-intensity interval training (HIIT) on brain neuroplasticity of aged mice
Extensive research has confirmed numerous advantages of exercise for promoting brain health. More recent studies have proposed the potential benefits of lactate, the by-product of exercise, in various aspects of brain function and disorders. However, there remains a gap in understanding the effects of lactate dosage and its impact on aged rodents. The present study first examined the long-term effects of three different doses of lactate intervention (2000 mg/kg, 1000 mg/kg, and 500 mg/kg) and high-intensity interval training (HIIT) on aging mice (20–22 months) as the 1st experiment. Subsequently, in the 2nd experiment, we investigated the long-term effects of 500 mg/kg lactate intervention and HIIT on brain neuroplasticity in aged mice (25–27 months).The results of the 1st experiment demonstrated that both HIIT and different doses of lactate intervention (500 mg/kg and 2000 mg/kg) positively impacted the neuroplasticity biomarker VEGF in the hippocampus of aging mice. Subsequently, the 2nd experiment revealed that long-term HIIT significantly improved the performance of mice in open-field, novel object recognition, and passive avoidance tests. However, lactate intervention did not significantly affect these behavioral tests. Moreover, compared to the control group, both HIIT and lactate intervention positively influenced the angiogenesis signaling pathway (p/t-AKT/ENOS/VEGF), mitochondrial biomarker (SDHA), and metabolic protein (p/t-CREB, p/t-HSL, and LDH) in the hippocampus of aged mice. Notably, only lactate intervention significantly elevated the BDNF (PGC-1α, SIRT1, and BDNF) signaling pathway and metabolic content (lactate and pyruvate). In the end, long-term HIIT and lactate intervention failed to change the protein expression of p/t-MTOR, iNOS, nNOS, HIF-1α, SYNAPSIN, SIRT3, NAMPT, CS, FNDC5 and Pan Lactic aid-Lysine in the hippocampus of aged mice.In summary, the present study proved that long-term HIIT and lactate treatment have positive effects on the brain functions of aged mice, suggesting the potential usage of lactate as a therapeutic strategy in neurodegenerative diseases in the elderly population