898 research outputs found
Stable non-uniform black strings below the critical dimension
The higher-dimensional vacuum Einstein equation admits translationally
non-uniform black string solutions. It has been argued that infinitesimally
non-uniform black strings should be unstable in 13 or fewer dimensions and
otherwise stable. We construct numerically non-uniform black string solutions
in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using
local Penrose inequalities. Weakly non-uniform solutions behave as expected.
However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be
stable and can have greater horizon area than a uniform string of the same
mass. In 14 and 15 dimensions all non-uniform black strings appear to be
stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio
Topology Change and Causal Continuity
The result that, for a scalar quantum field propagating on a ``trousers''
topology in 1+1 dimensions, the crotch singularity is a source for an infinite
burst of energy has been used to argue against the occurrence of topology
change in quantum gravity. We draw attention to a conjecture due to Sorkin that
it may be the particular type of topology change involved in the trousers
transition that is problematic and that other topology changes may not cause
the same difficulties. The conjecture links the singular behaviour to the
existence of ``causal discontinuities'' in the spacetime and relies on a
classification of topology changes using Morse theory. We investigate various
topology changing transitions, including the pair production of black holes and
of topological geons, in the light of these ideas.Comment: Latex, 28 pages, 10 figures, small changes in text (one figure
removed), conclusions remain unchanged. Accepted for publication in Physical
Review
A numerical study of the correspondence between paths in a causal set and geodesics in the continuum
This paper presents the results of a computational study related to the
path-geodesic correspondence in causal sets. For intervals in flat spacetimes,
and in selected curved spacetimes, we present evidence that the longest maximal
chains (the longest paths) in the corresponding causal set intervals
statistically approach the geodesic for that interval in the appropriate
continuum limit.Comment: To the celebration of the 60th birthday of Rafael D. Sorki
The Status of the Wave Function in Dynamical Collapse Models
The idea that in dynamical wave function collapse models the wave function is
superfluous is investigated. Evidence is presented for the conjecture that, in
a model of a field theory on a 1+1 lightcone lattice, knowing the field
configuration on the lattice back to some time in the past, allows the wave
function or quantum state at the present moment to be calculated, to arbitrary
accuracy so long as enough of the past field configuration is known.Comment: 35 pages, 11 figures, LaTex, corrected typos, some modifications
made. to appear in Found. of Phys. Lett. Vol. 18, Nbr 6, Nov 2005, 499-51
Quantum Dynamics without the Wave Function
When suitably generalized and interpreted, the path-integral offers an
alternative to the more familiar quantal formalism based on state-vectors,
selfadjoint operators, and external observers. Mathematically one generalizes
the path-integral-as-propagator to a {\it quantal measure} on the space
of all ``conceivable worlds'', and this generalized measure expresses
the dynamics or law of motion of the theory, much as Wiener measure expresses
the dynamics of Brownian motion. Within such ``histories-based'' schemes new,
and more ``realistic'' possibilities open up for resolving the philosophical
problems of the state-vector formalism. In particular, one can dispense with
the need for external agents by locating the predictive content of in its
sets of measure zero: such sets are to be ``precluded''. But unrestricted
application of this rule engenders contradictions. One possible response would
remove the contradictions by circumscribing the application of the preclusion
concept. Another response, more in the tradition of ``quantum logic'', would
accommodate the contradictions by dualizing to a space of
``co-events'' and effectively identifying reality with an element of this dual
space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it
Journal of Physics A: Mathematical and General} entitled ``The Quantum
Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th
birthday. Most current version is available at
http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may
be
Hilbert Spaces from Path Integrals
It is shown that a Hilbert space can be constructed for a quantum system
starting from a framework in which histories are fundamental. The Decoherence
Functional provides the inner product on this "History Hilbert space". It is
also shown that the History Hilbert space is the standard Hilbert space in the
case of non-relativistic quantum mechanics.Comment: 22 pages. Minor updates to match published versio
Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant
The energy density associated with Planck length is while the energy density associated with the Hubble length is
where . The observed value of the dark
energy density is quite different from {\it either} of these and is close to
the geometric mean of the two: .
It is argued that classical gravity is actually a probe of the vacuum {\it
fluctuations} of energy density, rather than the energy density itself. While
the globally defined ground state, being an eigenstate of Hamiltonian, will not
have any fluctuations, the ground state energy in the finite region of space
bounded by the cosmic horizon will exhibit fluctuations . When used as a source of gravity, this should
lead to a spacetime with a horizon size . This bootstrapping condition
leads naturally to an effective dark energy density which is precisely the observed value. The model
requires, either (i) a stochastic fluctuations of vacuum energy which is
correlated over about a Hubble time or (ii) a semi- anthropic interpretation.
The implications are discussed.Comment: r pages; revtex; comments welcom
An Analysis of the Representations of the Mapping Class Group of a Multi-Geon Three-Manifold
It is well known that the inequivalent unitary irreducible representations
(UIR's) of the mapping class group of a 3-manifold give rise to ``theta
sectors'' in theories of quantum gravity with fixed spatial topology. In this
paper, we study several families of UIR's of and attempt to understand the
physical implications of the resulting quantum sectors. The mapping class group
of a three-manifold which is the connected sum of with a finite number
of identical irreducible primes is a semi-direct product group. Following
Mackey's theory of induced representations, we provide an analysis of the
structure of the general finite dimensional UIR of such a group. In the picture
of quantized primes as particles (topological geons), this general
group-theoretic analysis enables one to draw several interesting qualitative
conclusions about the geons' behavior in different quantum sectors, without
requiring an explicit knowledge of the UIR's corresponding to the individual
primes.Comment: 52 pages, harvmac, 2 postscript figures, epsf required. Added an
appendix proving the semi-direct product structure of the MCG, corrected an
error in the characterization of the slide subgroup, reworded extensively.
All our analysis and conclusions remain as befor
On Black-Brane Instability In an Arbitrary Dimension
The black-hole black-string system is known to exhibit critical dimensions
and therefore it is interesting to vary the spacetime dimension , treating
it as a parameter of the system. We derive the large asymptotics of the
critical, i.e. marginally stable, string following an earlier numerical
analysis. For a background with an arbitrary compactification manifold we give
an expression for the critical mass of a corresponding black brane. This
expression is completely explicit for , the dimensional torus of
an arbitrary shape. An indication is given that by employing a higher
dimensional torus, rather than a single compact dimension, the total critical
dimension above which the nature of the black-brane black-hole phase transition
changes from sudden to smooth could be as low as .Comment: 1+14 pages, 2 eps figures. Replaced with the published versio
Dynamics & Predictions in the Co-Event Interpretation
Sorkin has introduced a new, observer independent, interpretation of quantum
mechanics that can give a successful realist account of the 'quantum
microworld' as well as explaining how classicality emerges at the level of
observable events for a range of systems including single time 'Copenhagen
measurements'. This 'co-event interpretation' presents us with a new ontology,
in which a single 'co-event' is real. A new ontology necessitates a review of
the dynamical & predictive mechanism of a theory, and in this paper we begin
the process by exploring means of expressing the dynamical and predictive
content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein
- …