898 research outputs found

    Stable non-uniform black strings below the critical dimension

    Full text link
    The higher-dimensional vacuum Einstein equation admits translationally non-uniform black string solutions. It has been argued that infinitesimally non-uniform black strings should be unstable in 13 or fewer dimensions and otherwise stable. We construct numerically non-uniform black string solutions in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using local Penrose inequalities. Weakly non-uniform solutions behave as expected. However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be stable and can have greater horizon area than a uniform string of the same mass. In 14 and 15 dimensions all non-uniform black strings appear to be stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio

    Topology Change and Causal Continuity

    Get PDF
    The result that, for a scalar quantum field propagating on a ``trousers'' topology in 1+1 dimensions, the crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the particular type of topology change involved in the trousers transition that is problematic and that other topology changes may not cause the same difficulties. The conjecture links the singular behaviour to the existence of ``causal discontinuities'' in the spacetime and relies on a classification of topology changes using Morse theory. We investigate various topology changing transitions, including the pair production of black holes and of topological geons, in the light of these ideas.Comment: Latex, 28 pages, 10 figures, small changes in text (one figure removed), conclusions remain unchanged. Accepted for publication in Physical Review

    A numerical study of the correspondence between paths in a causal set and geodesics in the continuum

    Full text link
    This paper presents the results of a computational study related to the path-geodesic correspondence in causal sets. For intervals in flat spacetimes, and in selected curved spacetimes, we present evidence that the longest maximal chains (the longest paths) in the corresponding causal set intervals statistically approach the geodesic for that interval in the appropriate continuum limit.Comment: To the celebration of the 60th birthday of Rafael D. Sorki

    The Status of the Wave Function in Dynamical Collapse Models

    Full text link
    The idea that in dynamical wave function collapse models the wave function is superfluous is investigated. Evidence is presented for the conjecture that, in a model of a field theory on a 1+1 lightcone lattice, knowing the field configuration on the lattice back to some time in the past, allows the wave function or quantum state at the present moment to be calculated, to arbitrary accuracy so long as enough of the past field configuration is known.Comment: 35 pages, 11 figures, LaTex, corrected typos, some modifications made. to appear in Found. of Phys. Lett. Vol. 18, Nbr 6, Nov 2005, 499-51

    Quantum Dynamics without the Wave Function

    Get PDF
    When suitably generalized and interpreted, the path-integral offers an alternative to the more familiar quantal formalism based on state-vectors, selfadjoint operators, and external observers. Mathematically one generalizes the path-integral-as-propagator to a {\it quantal measure} μ\mu on the space Ω\Omega of all ``conceivable worlds'', and this generalized measure expresses the dynamics or law of motion of the theory, much as Wiener measure expresses the dynamics of Brownian motion. Within such ``histories-based'' schemes new, and more ``realistic'' possibilities open up for resolving the philosophical problems of the state-vector formalism. In particular, one can dispense with the need for external agents by locating the predictive content of μ\mu in its sets of measure zero: such sets are to be ``precluded''. But unrestricted application of this rule engenders contradictions. One possible response would remove the contradictions by circumscribing the application of the preclusion concept. Another response, more in the tradition of ``quantum logic'', would accommodate the contradictions by dualizing Ω\Omega to a space of ``co-events'' and effectively identifying reality with an element of this dual space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it Journal of Physics A: Mathematical and General} entitled ``The Quantum Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th birthday. Most current version is available at http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may be

    Hilbert Spaces from Path Integrals

    Full text link
    It is shown that a Hilbert space can be constructed for a quantum system starting from a framework in which histories are fundamental. The Decoherence Functional provides the inner product on this "History Hilbert space". It is also shown that the History Hilbert space is the standard Hilbert space in the case of non-relativistic quantum mechanics.Comment: 22 pages. Minor updates to match published versio

    Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant

    Full text link
    The energy density associated with Planck length is ρuvLP4\rho_{uv}\propto L_P^{-4} while the energy density associated with the Hubble length is ρirLH4\rho_{ir}\propto L_H^{-4} where LH=1/HL_H=1/H. The observed value of the dark energy density is quite different from {\it either} of these and is close to the geometric mean of the two: ρvacρuvρir\rho_{vac}\simeq \sqrt{\rho_{uv} \rho_{ir}}. It is argued that classical gravity is actually a probe of the vacuum {\it fluctuations} of energy density, rather than the energy density itself. While the globally defined ground state, being an eigenstate of Hamiltonian, will not have any fluctuations, the ground state energy in the finite region of space bounded by the cosmic horizon will exhibit fluctuations Δρvac(LP,LH)\Delta\rho_{\rm vac}(L_P, L_H). When used as a source of gravity, this Δρ\Delta \rho should lead to a spacetime with a horizon size LHL_H. This bootstrapping condition leads naturally to an effective dark energy density Δρ(LuvLH)2H2/G\Delta\rho\propto (L_{uv}L_H)^{-2}\propto H^2/G which is precisely the observed value. The model requires, either (i) a stochastic fluctuations of vacuum energy which is correlated over about a Hubble time or (ii) a semi- anthropic interpretation. The implications are discussed.Comment: r pages; revtex; comments welcom

    An Analysis of the Representations of the Mapping Class Group of a Multi-Geon Three-Manifold

    Full text link
    It is well known that the inequivalent unitary irreducible representations (UIR's) of the mapping class group GG of a 3-manifold give rise to ``theta sectors'' in theories of quantum gravity with fixed spatial topology. In this paper, we study several families of UIR's of GG and attempt to understand the physical implications of the resulting quantum sectors. The mapping class group of a three-manifold which is the connected sum of R3\R^3 with a finite number of identical irreducible primes is a semi-direct product group. Following Mackey's theory of induced representations, we provide an analysis of the structure of the general finite dimensional UIR of such a group. In the picture of quantized primes as particles (topological geons), this general group-theoretic analysis enables one to draw several interesting qualitative conclusions about the geons' behavior in different quantum sectors, without requiring an explicit knowledge of the UIR's corresponding to the individual primes.Comment: 52 pages, harvmac, 2 postscript figures, epsf required. Added an appendix proving the semi-direct product structure of the MCG, corrected an error in the characterization of the slide subgroup, reworded extensively. All our analysis and conclusions remain as befor

    On Black-Brane Instability In an Arbitrary Dimension

    Full text link
    The black-hole black-string system is known to exhibit critical dimensions and therefore it is interesting to vary the spacetime dimension DD, treating it as a parameter of the system. We derive the large DD asymptotics of the critical, i.e. marginally stable, string following an earlier numerical analysis. For a background with an arbitrary compactification manifold we give an expression for the critical mass of a corresponding black brane. This expression is completely explicit for Tn{\bf T}^n, the nn dimensional torus of an arbitrary shape. An indication is given that by employing a higher dimensional torus, rather than a single compact dimension, the total critical dimension above which the nature of the black-brane black-hole phase transition changes from sudden to smooth could be as low as D11D\leq 11.Comment: 1+14 pages, 2 eps figures. Replaced with the published versio

    Dynamics & Predictions in the Co-Event Interpretation

    Get PDF
    Sorkin has introduced a new, observer independent, interpretation of quantum mechanics that can give a successful realist account of the 'quantum microworld' as well as explaining how classicality emerges at the level of observable events for a range of systems including single time 'Copenhagen measurements'. This 'co-event interpretation' presents us with a new ontology, in which a single 'co-event' is real. A new ontology necessitates a review of the dynamical & predictive mechanism of a theory, and in this paper we begin the process by exploring means of expressing the dynamical and predictive content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein
    corecore