1,129 research outputs found

    A Spin-Statistics Theorem for Certain Topological Geons

    Get PDF
    We review the mechanism in quantum gravity whereby topological geons, particles made from non-trivial spatial topology, are endowed with nontrivial spin and statistics. In a theory without topology change there is no obstruction to ``anomalous'' spin-statistics pairings for geons. However, in a sum-over-histories formulation including topology change, we show that non-chiral abelian geons do satisfy a spin-statistics correlation if they are described by a wave function which is given by a functional integral over metrics on a particular four-manifold. This manifold describes a topology changing process which creates a pair of geons from R3R^3.Comment: 21 pages, Plain TeX with harvmac, 3 figures included via eps

    On the "renormalization" transformations induced by cycles of expansion and contraction in causal set cosmology

    Get PDF
    We study the ``renormalization group action'' induced by cycles of cosmic expansion and contraction, within the context of a family of stochastic dynamical laws for causal sets derived earlier. We find a line of fixed points corresponding to the dynamics of transitive percolation, and we prove that there exist no other fixed points and no cycles of length two or more. We also identify an extensive ``basin of attraction'' of the fixed points but find that it does not exhaust the full parameter space. Nevertheless, we conjecture that every trajectory is drawn toward the fixed point set in a suitably weakened sense.Comment: 22 pages, 1 firgure, submitted to Phys. Rev.

    A Causal Order for Spacetimes with C0C^0 Lorentzian Metrics: Proof of Compactness of the Space of Causal Curves

    Full text link
    We recast the tools of ``global causal analysis'' in accord with an approach to the subject animated by two distinctive features: a thoroughgoing reliance on order-theoretic concepts, and a utilization of the Vietoris topology for the space of closed subsets of a compact set. We are led to work with a new causal relation which we call K+K^+, and in terms of it we formulate extended definitions of concepts like causal curve and global hyperbolicity. In particular we prove that, in a spacetime \M which is free of causal cycles, one may define a causal curve simply as a compact connected subset of \M which is linearly ordered by K+K^+. Our definitions all make sense for arbitrary C0C^0 metrics (and even for certain metrics which fail to be invertible in places). Using this feature, we prove for a general C0C^0 metric, the familiar theorem that the space of causal curves between any two compact subsets of a globally hyperbolic spacetime is compact. We feel that our approach, in addition to yielding a more general theorem, simplifies and clarifies the reasoning involved. Our results have application in a recent positive energy theorem, and may also prove useful in the study of topology change. We have tried to make our treatment self-contained by including proofs of all the facts we use which are not widely available in reference works on topology and differential geometry.Comment: Two small revisions to accomodate errors brought to our attention by R.S. Garcia. No change to chief results. 33 page

    Topology Change and Causal Continuity

    Get PDF
    The result that, for a scalar quantum field propagating on a ``trousers'' topology in 1+1 dimensions, the crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the particular type of topology change involved in the trousers transition that is problematic and that other topology changes may not cause the same difficulties. The conjecture links the singular behaviour to the existence of ``causal discontinuities'' in the spacetime and relies on a classification of topology changes using Morse theory. We investigate various topology changing transitions, including the pair production of black holes and of topological geons, in the light of these ideas.Comment: Latex, 28 pages, 10 figures, small changes in text (one figure removed), conclusions remain unchanged. Accepted for publication in Physical Review

    Morse Theory and the Topology of Configuration Space

    Full text link
    The first and second homology groups are computed for configuration spaces of framed three-dimensional point particles with annihilation included, when up to two particles and an antiparticle are present

    Scalar Field Theory on a Causal Set in Histories Form

    Full text link
    We recast into histories-based form a quantum field theory defined earlier in operator language for a free scalar field on a background causal set. The resulting decoherence-functional resembles that of the continuum theory. The counterpart of the d'Alembertian operator is nonlocal and is a generalized inverse of the discrete retarded Green function. We comment on the significance of this and we also suggest how to include interactions.Comment: plainTeX, 25 pages, no figures. One paragraph added, other small changes. Most current version is available at http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/142.causet.dcf.pdf (or wherever my home-page may be, such as http://www.physics.syr.edu/~sorkin/some.papers/

    The Status of the Wave Function in Dynamical Collapse Models

    Full text link
    The idea that in dynamical wave function collapse models the wave function is superfluous is investigated. Evidence is presented for the conjecture that, in a model of a field theory on a 1+1 lightcone lattice, knowing the field configuration on the lattice back to some time in the past, allows the wave function or quantum state at the present moment to be calculated, to arbitrary accuracy so long as enough of the past field configuration is known.Comment: 35 pages, 11 figures, LaTex, corrected typos, some modifications made. to appear in Found. of Phys. Lett. Vol. 18, Nbr 6, Nov 2005, 499-51

    Physical Logic

    Full text link
    In R.D. Sorkin's framework for logic in physics a clear separation is made between the collection of unasserted propositions about the physical world and the affirmation or denial of these propositions by the physical world. The unasserted propositions form a Boolean algebra because they correspond to subsets of an underlying set of spacetime histories. Physical rules of inference, apply not to the propositions in themselves but to the affirmation and denial of these propositions by the actual world. This physical logic may or may not respect the propositions' underlying Boolean structure. We prove that this logic is Boolean if and only if the following three axioms hold: (i) The world is affirmed, (ii) Modus Ponens and (iii) If a proposition is denied then its negation, or complement, is affirmed. When a physical system is governed by a dynamical law in the form of a quantum measure with the rule that events of zero measure are denied, the axioms (i) - (iii) prove to be too rigid and need to be modified. One promising scheme for quantum mechanics as quantum measure theory corresponds to replacing axiom (iii) with axiom (iv) Nature is as fine grained as the dynamics allows.Comment: 14 pages, v2 published version with a change in the title and other minor change

    Evidence for a continuum limit in causal set dynamics

    Get PDF
    We find evidence for a continuum limit of a particular causal set dynamics which depends on only a single ``coupling constant'' pp and is easy to simulate on a computer. The model in question is a stochastic process that can also be interpreted as 1-dimensional directed percolation, or in terms of random graphs.Comment: 24 pages, 19 figures, LaTeX, adjusted terminolog

    A Classical Sequential Growth Dynamics for Causal Sets

    Full text link
    Starting from certain causality conditions and a discrete form of general covariance, we derive a very general family of classically stochastic, sequential growth dynamics for causal sets. The resulting theories provide a relatively accessible ``half way house'' to full quantum gravity that possibly contains the latter's classical limit (general relativity). Because they can be expressed in terms of state models for an assembly of Ising spins living on the relations of the causal set, these theories also illustrate how non-gravitational matter can arise dynamically from the causal set without having to be built in at the fundamental level. Additionally, our results bring into focus some interpretive issues of importance for causal set dynamics, and for quantum gravity more generally.Comment: 28 pages, 9 figures, LaTeX, added references and a footnote, minor correction
    corecore