154 research outputs found

    Symmetry-breaking and zero-one laws

    Get PDF
    We offer further evidence that discreteness of the sort inherent in a causal set cannot, in and of itself, serve to break Poincaré invariance. In particular we prove that a Poisson sprinkling of Minkowski spacetime cannot endow spacetime with a distinguished spatial or temporal orientation, or with a distinguished lattice of spacetime points, or with a distinguished lattice of timelike directions (corresponding respectively to breakings of reflection-invariance, translation-invariance, and Lorentz invariance). Along the way we provide a proof from first principles of the zero-one law on which our new arguments are based

    A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features, and Cosmology

    Full text link
    We define a distinguished "ground state" or "vacuum" for a free scalar quantum field in a globally hyperbolic region of an arbitrarily curved spacetime. Our prescription is motivated by the recent construction of a quantum field theory on a background causal set using only knowledge of the retarded Green's function. We generalize that construction to continuum spacetimes and find that it yields a distinguished vacuum or ground state for a non-interacting, massive or massless scalar field. This state is defined for all compact regions and for many noncompact ones. In a static spacetime we find that our vacuum coincides with the usual ground state. We determine it also for a radiation-filled, spatially homogeneous and isotropic cosmos, and show that the super-horizon correlations are approximately the same as those of a thermal state. Finally, we illustrate the inherent non-locality of our prescription with the example of a spacetime which sandwiches a region with curvature in-between flat initial and final regions

    A regularisation approach to causality theory for C^{1,1}Lorentzian metrics

    No full text
    We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to C^{1,1}. Our approach is based on regularisations of the metric adapted to the causal structure

    Conformal weights in the Kerr/CFT correspondence

    Full text link
    It has been conjectured that a near-extreme Kerr black hole is described by a 2d CFT. Previous work has shown that CFT operators dual to axisymmetric gravitational perturbations have integer conformal weights. In this paper, we study the analogous problem in 5d. We consider the most general near-extreme vacuum black hole with two rotational symmetries. This includes Myers-Perry black holes, black rings and Kaluza-Klein black holes. We find that operators dual to gravitational (or electromagnetic or massless scalar field) perturbations preserving both rotational symmetries have integer conformal weights, the same for all black holes considered.Comment: 19 page

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    Counting all dyons in N =4 string theory

    Get PDF
    For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I = g.c.d.(Q \wedge P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I=1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0,4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio
    corecore