8 research outputs found

    Flexible Force Sensors Based on Permeability Change in Ultra-Soft Amorphous Wires

    No full text

    IMPROVEMENTS IN THE DIAGNOSIS OF OBSTRUCTIVE SLEEP APNEA IN CHILDREN

    No full text
    Obstructive sleep apnea in children is due to adeno-tonsillar hypertrophy, in the majority of cases – a common condition in children that can be cured by the ENT surgeon by a relatively safe surgery. The final diagnosis of Obstructive sleep apnea is possible with polysomnography. This test is difficult to be performed in small children due to the contact sensors that are displaced during the agitated sleep of a child with sleep apnea. We propose a quasi noncontact sensor to be used to record the respiratory movements of children during sleep. The preliminary tests show that the method might be applicable in the clinical settings

    Comparative Study of the Magnetic Behavior of FINEMET Thin Magnetic Wires: Glass-Coated, Glass-Removed, and Cold-Drawn

    No full text
    In this paper, a comparative investigation of the magnetic behavior and its stress dependence in the case of FINEMET glass-coated, glass-removed, and cold-drawn microwires at low and high frequencies, respectively, is presented. The experimental results show major differences between their magnetic properties depending on the preparation method and microwire diameter. The evolution of the magnetic permeability, coercivity, and magnetoimpedance responses with the applied tensile force was investigated and analyzed in correlation with the stresses induced during preparation, their relief following annealing, and the annealing-induced structural transformations. The coercivity dependence on applied force was found to show the highest sensitivity in the glass-removed microwires, while the magnetic permeability and magnetoimpedance sensitivity to force were found to be higher in the cold-drawn samples. The results of this comparative study will enable an enhanced material selection process for various applications in miniaturized magnetic and stress sensors with increased sensitivity

    Comparative Study of the Magnetic Behavior of FINEMET Thin Magnetic Wires: Glass-Coated, Glass-Removed, and Cold-Drawn

    No full text
    In this paper, a comparative investigation of the magnetic behavior and its stress dependence in the case of FINEMET glass-coated, glass-removed, and cold-drawn microwires at low and high frequencies, respectively, is presented. The experimental results show major differences between their magnetic properties depending on the preparation method and microwire diameter. The evolution of the magnetic permeability, coercivity, and magnetoimpedance responses with the applied tensile force was investigated and analyzed in correlation with the stresses induced during preparation, their relief following annealing, and the annealing-induced structural transformations. The coercivity dependence on applied force was found to show the highest sensitivity in the glass-removed microwires, while the magnetic permeability and magnetoimpedance sensitivity to force were found to be higher in the cold-drawn samples. The results of this comparative study will enable an enhanced material selection process for various applications in miniaturized magnetic and stress sensors with increased sensitivity

    Ultrathin Nanocrystalline Magnetic Wires

    No full text
    The magnetic characteristics of FINEMET type glass-coated nanowires and submicron wires are investigated by taking into account the structural evolution induced by specific annealing all the way from a fully amorphous state to a nanocrystalline structure. The differences between the magnetic properties of these ultrathin wires and those of the thicker glass-coated microwires and “conventional” wires with similar structures have been emphasized and explained phenomenologically. The domain wall propagation in these novel nanowires and submicron wires, featuring a combination between an amorphous and a crystalline structure, has also been studied, given the recent interest in the preparation and investigation of new materials suitable for the development of domain wall logic applications

    Stochastic Magnetization Switching in Rapidly Solidified (Co0.94Fe0.06)72.5Si12.5B15 Amorphous Submicronic Wires

    No full text
    Submicrometric magnetic amorphous wires are good candidates for future development of miniaturized sensors and magnetic logic applications. Here we report the results of an in-depth investigation of magnetization switching in rapidly solidified nearly zero magnetostrictive (Co0.94Fe0.06)72.5Si12.5B15 amorphous samples with diameters of the actual magnetic wires between 300 and 450 nm. All samples were found to be magnetically bistable, displaying characteristic rectangular hysteresis loops. This shows that magnetization reversal occurs through the depinning and subsequent propagation of a magnetic domain wall, whose velocity depends on the applied field and on the sample dimensions. The results of this study reveal stochastic nonlinear dependencies of both the magnetic switching field and the domain wall velocity on the sample diameter. The analysis of the potential causes, which include nonlinear residual stresses, fluctuations in wire dimensions (metal and glass), and competing magnetic anisotropies of different origins, show that a combination of all three factors could lead to the observed stochastic behavior. Calculated values of the switching field, which consider only changes in the wire dimensions, indicate that such influence alone cannot account for the strong nonlinearities. The results are important for the applications of such ultrathin cylindrical magnetic amorphous wires

    The Effect of Magnetoelastic Anisotropy on the Magnetization Processes in Rapidly Quenched Amorphous Nanowires

    No full text
    In this paper, we report for the first time on the theoretical and experimental investigation of Fe77.5Si7.5B15 amorphous glass-coated nanowires by analyzing samples with the same diameters in both cases. The hysteresis curves, the dependence of the switching field values on nanowire dimensions, and the effect of the magnetoelastic anisotropy on the magnetization processes were analyzed and interpreted to explain the magnetization reversal in highly magnetostrictive amorphous nanowires prepared in cylindrical shape by rapid quenching from the melt. All the measured samples were found to be magnetically bistable, being characterized by rectangular hysteresis loops. The most important feature of the study is the inclusion of the magnetoelastic anisotropy term that originates in the specific production process of these amorphous nanowires. The results show that the switching field decreases when the nanowire diameter increases and this effect is due to the reduction in anisotropy and in the intrinsic mechanical stresses. Moreover, the obtained results reveal the importance of factors such as geometry and magnetoelastic anisotropy for the experimental design of cylindrical amorphous nanowires for multiple applications in miniaturized devices, like micro and nanosensors
    corecore