42 research outputs found

    p31 comet acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment

    Get PDF
    The spindle assembly checkpoint links the onset of anaphase to completion of chromosome-microtubule attachment and is mediated by the binding of Mad and Bub proteins to kinetochores of unattached or maloriented chromosomes. Mad2 and BubR1 traffic between kinetochores and the cytosol, thereby transmitting a "wait anaphase" signal to the anaphase-promoting complex. It is generally assumed that this signal dissipates automatically upon kinetochore-microtubule binding, but it has been shown that under conditions of nocodazole-induced arrest p31comet, a Mad2-binding protein, is required for mitotic progression. In this article we investigate the localization and function of p31 comet during normal, unperturbed mitosis in human and marsupial cells. We find that, like Mad2, p31 comet traffics on and off kinetochores and is also present in the cytosol. Cells depleted of p31 comet arrest in metaphase with mature bipolar kinetochore-microtubule attachments, a satisfied checkpoint, and high cyclin B levels. Thus p31 comet is required for timely mitotic exit. We propose that p31 comet is an essential component of the machinery that silences the checkpoint during each cell cycle

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure
    corecore