5,237 research outputs found

    Effect of resonance decays on hadron elliptic flows

    Get PDF
    The influence of resonance decays on the elliptic flows of stable hadrons is studied in the quark coalescence model. Although difference between the elliptic flow of pions from resonance decays, except the rho meson, and that of directly produced pions is appreciable, those for other stable hadrons are small. Since there are more pions from the decays of rho mesons than from other resonances, including resonance decays can only account partially the deviation of final pion elliptic flow from the observed scaling of hadron elliptic flows, i.e., the hadron elliptic flow per quark is the same at same transverse momentum per quark. The remaining deviation can be explained by including the effect due to the quark momentum distribution inside hadrons.Comment: 13 pages and 5 figures, version pubblished in PRC, updated references and figure

    Magnetic Impurity in the two-dimensional Heisenberg Antiferromagnet

    Full text link
    We analyze the ground state properties of the two-dimensional quantum antiferromagnet with a S=1/2 Kondo impurity. Perturbation theory around the strong Kondo coupling limit is developed and the results compared with studies, based on exact diagonalization of small clusters. We find that at intermediate coupling the impurity is partially screened and the magnetization locally suppressed. A local singlet between the impurity and the host spin is formed asymptotically.Comment: 12 REVTex pages, 4 Postscript figure

    Low temperature spin diffusion in the one-dimensional quantum O(3)O(3) nonlinear σ\sigma-model

    Full text link
    An effective, low temperature, classical model for spin transport in the one-dimensional, gapped, quantum O(3)O(3) non-linear σ\sigma-model is developed. Its correlators are obtained by a mapping to a model solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications for experiments on one-dimensional insulators with a spin gap are noted.Comment: 4 pages including 3 eps-figures, Revte

    Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes

    Get PDF
    We point out that, since the colliders initial states (e+ e-,p p, p pbar, ... ) carry a definite nonabelian flavor, electroweak radiative corrections to inclusive hard cross sections at the TeV scale are affected by peculiar Bloch-Nordsieck violating double logs. We recall the setup of soft cancellation theorems, and we analyze the magnitude of the noncancelling terms in the example of electron - positron annihilation into hadrons.Comment: Minor typos corrected, references added. Final version to appear on Phys. Rev. Let

    Spectrum of elementary and collective excitations in the dimerized S=1/2 Heisenberg chain with frustration

    Full text link
    We have studied the low-energy excitation spectrum of a dimerized and frustrated antiferromagnetic Heisenberg chain. We use an analytic approach, based on a description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. Additional singlet (S=0) and triplet (S=1) modes are found as two-particle bound states of the elementary triplets. We have also calculated the contributions of the elementary and collective excitations into the spin structure factor. Our results are in excellent agreement with exact diagonalizations and dimer series expansions data as long as the dimerization parameter ÎŽ\delta is not too small (ÎŽ>0.1\delta>0.1), i.e. while the elementary triplets can be treated as localized objects.Comment: 18 pages, 13 figure

    Nonlinear excitations in arrays of Bose-Einstein condensates

    Full text link
    The dynamics of localized excitations in array of Bose-Einstein condensates is investigated in the framework of the nonlinear lattice theory. The existence of temporarily stable ground states displaying an atomic population distributions localized on very few lattice sites (intrinsic localized modes), as well as, of atomic population distributions involving many lattice sites (envelope solitons), is studied both numerically and analytically. The origin and properties of these modes are shown to be inherently connected with the interplay between macroscopic quantum tunnelling and nonlinearity induced self-trapping of atoms in coupled BECs. The phenomenon of Bloch oscillations of these excitations is studied both for zero and non zero backgrounds. We find that in a definite range of parameters, homogeneous distributions can become modulationally unstable. We also show that bright solitons and excitations of shock wave type can exist in BEC arrays even in the case of positive scattering length. Finally, we argue that BEC array with negative scattering length in presence of linear potentials can display collapse.Comment: Submitted to Phys. Rev.

    Speed of ion trap quantum information processors

    Get PDF
    We investigate theoretically the speed limit of quantum gate operations for ion trap quantum information processors. The proposed methods use laser pulses for quantum gates which entangle the electronic and vibrational degrees of freedom of the trapped ions. Two of these methods are studied in detail and for both of them the speed is limited by a combination of the recoil frequency of the relevant electronic transition, and the vibrational frequency in the trap. We have experimentally studied the gate operations below and above this speed limit. In the latter case, the fidelity is reduced, in agreement with our theoretical findings. // Changes: a) error in equ. 24 and table III repaired b) reference Jonathan et al, quant-ph/ 0002092, added (proposes fast quantum gates using the AC-Stark effect)Comment: 10 pages, 4 figure

    Excitation spectrum of the S=1/2 quantum spin ladder with frustration: elementary quasiparticles and many-particle bound states

    Full text link
    We study the excitation spectrum of the two-chain S=1/2 Heisenberg spin ladder with additional inter-chain second-neighbor frustrating interactions. The one and two-particle excitations are analyzed by using a mapping of the model onto a Bose gas of hard-core triplets. We find that low-lying singlet and triplet two-particle bound states are present and their binding energy increases with increasing frustration. In addition, many-particle bound states are found by a combination of variational and exact diagonalization techniques. We prove that the larger the number of bound quasiparticles the larger the binding energy. Thus the excitation spectrum has a complex structure and consists of elementary triplets and collective many-particle singlet and triplet excitations which generally mix with the elementary ones. The model exhibits a quantum phase transition from an antiferromagnetic ladder phase (small frustration) into Haldane phase (effectively ferromagnetic ladder for large frustration). We argue that near the transition point the spectrum in both triplet and singlet channels becomes gapless. The excitation wave function is dominated by large-size bound states which leads to the vanishing of the quasiparticle residue.Comment: RevTeX, 23 pages, 12 figure

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Particle correlations at RHIC from parton coalescence dynamics -- first results

    Full text link
    A new dynamical approach that combines covariant parton transport theory with hadronization channels via parton coalescence and fragmentation is applied to Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA). 4 pages, 2 EPS figs, IOP style fil
    • 

    corecore