10,255 research outputs found

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Information transfer through a one-atom micromaser

    Full text link
    We consider a realistic model for the one-atom micromaser consisting of a cavity maintained in a steady state by the streaming of two-level Rydberg atoms passing one at a time through it. We show that it is possible to monitor the robust entanglement generated between two successive experimental atoms passing through the cavity by the control decoherence parameters. We calculate the entanglement of formation of the joint two-atom state as a function of the micromaser pump parameter. We find that this is in direct correspondence with the difference of the Shannon entropy of the cavity photons before and after the passage of the atoms for a reasonable range of dissipation parameters. It is thus possible to demonstrate information transfer between the cavity and the atoms through this set-up.Comment: Revtex, 5 pages, 2 encapsulated ps figures; added discussion on information transfer in relation with cavity photon statistics; typos corrected; Accepted for Publicaiton in Europhysics Letter

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    PMDM3: PROJECTING ECONOMIC RESULTS OF A EUROPEAN TRIAL TO THE UNITED STATES: ISSUES AND METHODS

    Get PDF

    Imposing high-symmetry and tuneable geometry on lanthanide centres with chelating Pt and Pd metalloligands

    Get PDF
    Exploitation of HSAB preferences allows for high-yield, one-pot syntheses of lanthanide complexes chelated by two Pd or Pt metalloligands, [MII(SAc)4]2− (SAc− = thioacetate, M = Pd, Pt). The resulting complexes with 8 oxygen donors surrounding the lanthanides can be isolated in crystallographically tetragonal environments as either [NEt4]+ (space group: P4/mcc) or [PPh4]+ (space group: P4/n) salts. In the case of M = Pt, the complete series of lanthanide complexes has been structurally characterized as the [NEt4]+ salts (except for Ln = Pm), while the [PPh4]+ salts have been structurally characterized for Ln = Gd–Er, Y. For M = Pd, selected lanthanide complexes have been structurally characterized as both salts. The only significant structural difference between salts of the two counter ions is the resulting twist angle connecting tetragonal prismatic and tetragonal anti-prismatic configurations, with the [PPh4]+ salts approaching ideal D4d symmetry very closely (φ = 44.52–44.61°) while the [NEt4]+ salts exhibit intermediate twist angles in the interval φ = 17.28–27.41°, the twist increasing as the complete 4f series is traversed. Static magnetic properties for the latter half of the lanthanide series are found to agree well in the high temperature limit with the expected Curie behavior. Perpendicular and parallel mode EPR spectroscopy on randomly oriented powder samples and single crystals of the Gd complexes with respectively Pd- and Pt-based metalloligands demonstrate the nature of the platinum metal to strongly affect the spectra. Consistent parametrization of all of the EPR spectra reveals the main difference to stem from a large difference in the magnitude of the leading axial term, B02, this being almost four times larger for the Pt-based complexes as compared to the Pd analogues, indicating a direct Pt(5dz2)–Ln interaction and an arguable coordination number of 10 rather than 8. The parametrization of the EPR spectra also confirms that off-diagonal operators are associated with non-zero parameters for the [NEt4]+ salts, while only contributing minimally for the [PPh4]+ salts in which lanthanide coordination approximates D4d point group symmetry closely.LHD acknowledges support from NSF-CCT EMT 08-517. (08-517 - NSF-CCT EMT

    Genralized Robustness of Entanglement

    Full text link
    The robustness of entanglement results of Vidal and Tarrach considered the problem whereby an entangled state is mixed with a separable state so that the overall state becomes non-entangled. In general it is known that there are also cases when entangled states are mixed with other entangled states and where the sum is separable. In this paper, we treat the more general case where entangled states can be mixed with any states so that the resulting mixture is unentangled. It is found that entangled pure states for this generalized case have the same robustness as the restricted case of Vidal and Tarrach.Comment: Final version. Editorial changes and references added to independent wor

    Fluctuation and flow probes of early-time correlations in relativistic heavy ion collisions

    Full text link
    Fluctuation and correlation observables are often measured using multi-particle correlation methods and therefore mutually probe the origins of genuine correlations present in multi-particle distribution functions. We investigate the common influence of correlations arising from the spatially inhomogeneous initial state on multiplicity and momentum fluctuations as well as flow fluctuations. Although these observables reflect different aspects of the initial state, taken together, they can constrain a correlation scale set at the earliest moments of the collision. We calculate both the correlation scale in an initial stage Glasma flux tube picture and the modification to these correlations from later stage hydrodynamic flow and find quantitative agreement with experimental measurements over a range of collision systems and energies.Comment: Proceedings of the 28th Winter Workshop on Nuclear Dynamics, Dorado del Mar, Puerto Rico, April 7-14, 201
    • …
    corecore