9,201 research outputs found
Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling
Core excitation from terminal oxygen O in O is shown to be an
excitation from a localized core orbital to a localized valence orbital. The
valence orbital is localized to one of the two equivalent chemical bonds. We
experimentally demonstrate this with the Auger Doppler effect which is
observable when O is core-excited to the highly dissociative
O1s7a state. Auger electrons emitted from the atomic oxygen
fragment carry information about the molecular orientation relative to the
electromagnetic field vector at the moment of excitation. The data together
with analytical functions for the electron-peak profiles give clear evidence
that the preferred molecular orientation for excitation only depends on the
orientation of one bond, not on the total molecular orientation. The
localization of the valence orbital "7a" is caused by mixing of the valence
orbital "5b" through vibronic coupling of anti-symmetric stretching mode
with b-symmetry. To the best of our knowledge, it is the first discussion
of the localization of a core excitation of O. This result explains the
success of the widely used assumption of localized core excitation in
adsorbates and large molecules
Panayia Ematousa II: Political, cultural, ethnic and social relations in Cyprus: Approaches to regional studies
Edited by L. Wriedt Sorensen & K. Winther Jacobse
Quantum noise limited interferometric measurement of atomic noise: towards spin squeezing on the Cs clock transition
We investigate theoretically and experimentally a nondestructive
interferometric measurement of the state population of an ensemble of laser
cooled and trapped atoms. This study is a step towards generation of (pseudo-)
spin squeezing of cold atoms targeted at the improvement of the Caesium clock
performance beyond the limit set by the quantum projection noise of atoms. We
calculate the phase shift and the quantum noise of a near resonant optical
probe pulse propagating through a cloud of cold 133Cs atoms. We analyze the
figure of merit for a quantum non-demolition (QND) measurement of the
collective pseudo-spin and show that it can be expressed simply as a product of
the ensemble optical density and the pulse integrated rate of the spontaneous
emission caused by the off-resonant probe light. Based on this, we propose a
protocol for the sequence of operations required to generate and utilize spin
squeezing for the improved atomic clock performance via a QND measurement on
the probe light. In the experimental part we demonstrate that the
interferometric measurement of the atomic population can reach the sensitivity
of the order of N_at^1/2 in a cloud of N_at cold atoms, which is an important
benchmark towards the experimental realisation of the theoretically analyzed
protocol.Comment: 12 pages and 9 figures, accepted to Physical Review
Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices
We suggest a simple experimental method for probing antiferromagnetic spin
correlations of two-component Fermi gases in optical lattices. The method
relies on a spin selective Raman transition to excite atoms of one spin species
to their first excited vibrational mode where the tunneling is large. The
resulting difference in the tunneling dynamics of the two spin species can then
be exploited, to reveal the spin correlations by measuring the number of doubly
occupied lattice sites at a later time. We perform quantum Monte Carlo
simulations of the spin system and solve the optical lattice dynamics
numerically to show how the timed probe can be used to identify
antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure
Cenotes as Conceptual Boundary Markers at the Ancient Maya Site of T’isil, Quintana Roo, México
Ancient Maya communities, from small village sites to urban centers, have long posed problems to archaeologists in attempting to define the boundaries or limits of settlement. These ancient communities tend to be relatively dispersed, with settlement densities dropping toward the periphery, but lacking any clear boundary. At a limited number of sites, the Maya constructed walled enclosures or earthworks, which scholars have generally interpreted as defensive projects, often hastily built to protect the central districts of larger administrative centers during times of warfare (e.g., Demarest et al. 1997; Inomata 1997; Kurjack and Andrews 1976; Puleston and Callender 1967; Webster 2000; Webster et al. 2007). As another response to conflict in the southern lowlands, small villages or hamlets are reported to have been established on defensive hilltop locations and surrounded by palisades (Demarest et al. 1997; O\u27Mansky and Dunning 2004). At some walled sites, walls may have served more to define gated communities in the modern sense of the phrase; a boundary that separates an elite community from the more common folk living just outside of the walls
Toward Quantum Superposition of Living Organisms
The most striking feature of quantum mechanics is the existence of
superposition states, where an object appears to be in different situations at
the same time. The existence of such states has been tested with small objects,
like atoms, ions, electrons and photons, and even with molecules. More
recently, it has been possible to create superpositions of collections of
photons, atoms, or Cooper pairs. Current progress in optomechanical systems may
soon allow us to create superpositions of even larger objects, like micro-sized
mirrors or cantilevers, and thus to test quantum mechanical phenomena at larger
scales. Here we propose a method to cool down and create quantum superpositions
of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped
inside a high--finesse cavity at a very low pressure. Our method is ideally
suited for the smallest living organisms, such as viruses, which survive under
low vacuum pressures, and optically behave as dielectric objects. This opens up
the possibility of testing the quantum nature of living organisms by creating
quantum superposition states in very much the same spirit as the original
Schr\"odinger's cat "gedanken" paradigm. We anticipate our essay to be a
starting point to experimentally address fundamental questions, such as the
role of life and consciousness in quantum mechanics.Comment: 9 pages, 4 figures, published versio
SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases
We construct a family of rotationally invariant, local, S=1/2 Klein
Hamiltonians on various lattices that exhibit ground state manifolds spanned by
nearest-neighbor valence bond states. We show that with selected perturbations
such models can be driven into phases modeled by well understood quantum dimer
models on the corresponding lattices. Specifically, we show that the
perturbation procedure is arbitrarily well controlled by a new parameter which
is the extent of decoration of the reference lattice. This strategy leads to
Hamiltonians that exhibit i) RVB phases in two dimensions, ii) U(1) RVB
phases with a gapless ``photon'' in three dimensions, and iii) a Cantor
deconfined region in two dimensions. We also construct two models on the
pyrochlore lattice, one model exhibiting a RVB phase and the other a U(1)
RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor
typos fixe
Tunable few electron quantum dots in InAs nanowires
Quantum dots realized in InAs are versatile systems to study the effect of
spin-orbit interaction on the spin coherence, as well as the possibility to
manipulate single spins using an electric field. We present transport
measurements on quantum dots realized in InAs nanowires. Lithographically
defined top-gates are used to locally deplete the nanowire and to form
tunneling barriers. By using three gates, we can form either single quantum
dots, or two quantum dots in series along the nanowire. Measurements of the
stability diagrams for both cases show that this method is suitable for
producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure
- …