9,201 research outputs found

    Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling

    Full text link
    Core excitation from terminal oxygen OT_T in O3_3 is shown to be an excitation from a localized core orbital to a localized valence orbital. The valence orbital is localized to one of the two equivalent chemical bonds. We experimentally demonstrate this with the Auger Doppler effect which is observable when O3_3 is core-excited to the highly dissociative OT_{T}1s1^{-1}7a11_1^1 state. Auger electrons emitted from the atomic oxygen fragment carry information about the molecular orientation relative to the electromagnetic field vector at the moment of excitation. The data together with analytical functions for the electron-peak profiles give clear evidence that the preferred molecular orientation for excitation only depends on the orientation of one bond, not on the total molecular orientation. The localization of the valence orbital "7a1_1" is caused by mixing of the valence orbital "5b2_2" through vibronic coupling of anti-symmetric stretching mode with b2_2-symmetry. To the best of our knowledge, it is the first discussion of the localization of a core excitation of O3_3. This result explains the success of the widely used assumption of localized core excitation in adsorbates and large molecules

    Panayia Ematousa II: Political, cultural, ethnic and social relations in Cyprus: Approaches to regional studies

    Get PDF
    Edited by L. Wriedt Sorensen & K. Winther Jacobse

    Quantum noise limited interferometric measurement of atomic noise: towards spin squeezing on the Cs clock transition

    Full text link
    We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser cooled and trapped atoms. This study is a step towards generation of (pseudo-) spin squeezing of cold atoms targeted at the improvement of the Caesium clock performance beyond the limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a near resonant optical probe pulse propagating through a cloud of cold 133Cs atoms. We analyze the figure of merit for a quantum non-demolition (QND) measurement of the collective pseudo-spin and show that it can be expressed simply as a product of the ensemble optical density and the pulse integrated rate of the spontaneous emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved atomic clock performance via a QND measurement on the probe light. In the experimental part we demonstrate that the interferometric measurement of the atomic population can reach the sensitivity of the order of N_at^1/2 in a cloud of N_at cold atoms, which is an important benchmark towards the experimental realisation of the theoretically analyzed protocol.Comment: 12 pages and 9 figures, accepted to Physical Review

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Cenotes as Conceptual Boundary Markers at the Ancient Maya Site of T’isil, Quintana Roo, México

    Get PDF
    Ancient Maya communities, from small village sites to urban centers, have long posed problems to archaeologists in attempting to define the boundaries or limits of settlement. These ancient communities tend to be relatively dispersed, with settlement densities dropping toward the periphery, but lacking any clear boundary. At a limited number of sites, the Maya constructed walled enclosures or earthworks, which scholars have generally interpreted as defensive projects, often hastily built to protect the central districts of larger administrative centers during times of warfare (e.g., Demarest et al. 1997; Inomata 1997; Kurjack and Andrews 1976; Puleston and Callender 1967; Webster 2000; Webster et al. 2007). As another response to conflict in the southern lowlands, small villages or hamlets are reported to have been established on defensive hilltop locations and surrounded by palisades (Demarest et al. 1997; O\u27Mansky and Dunning 2004). At some walled sites, walls may have served more to define gated communities in the modern sense of the phrase; a boundary that separates an elite community from the more common folk living just outside of the walls

    Toward Quantum Superposition of Living Organisms

    Full text link
    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been tested with small objects, like atoms, ions, electrons and photons, and even with molecules. More recently, it has been possible to create superpositions of collections of photons, atoms, or Cooper pairs. Current progress in optomechanical systems may soon allow us to create superpositions of even larger objects, like micro-sized mirrors or cantilevers, and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high--finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low vacuum pressures, and optically behave as dielectric objects. This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schr\"odinger's cat "gedanken" paradigm. We anticipate our essay to be a starting point to experimentally address fundamental questions, such as the role of life and consciousness in quantum mechanics.Comment: 9 pages, 4 figures, published versio

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure
    corecore