9,260 research outputs found
Femtoscopy of the system shape fluctuations in heavy ion collisions
Dipole, triangular, and higher harmonic flow that have an origin in the
initial density fluctuations has gained a lot of attention as they can provide
additional important information about the dynamical properties (e.g.
viscosity) of the system. The fluctuations in the initial geometry should be
also reflected in the detail shape and velocity field of the system at
freeze-out. In this talk I discuss the possibility to measure such fluctuations
by means of identical and non-identical particle interferometry.Comment: 4 pages, Proceedings of Quark Matter 2011 Conference, May 23 - May
28, Annecy, Franc
Integrable versus Non-Integrable Spin Chain Impurity Models
Recent renormalization group studies of impurities in spin-1/2 chains appear
to be inconsistent with Bethe ansatz results for a special integrable model. We
study this system in more detail around the integrable point in parameter space
and argue that this integrable impurity model corresponds to a non-generic
multi-critical point. Using previous results on impurities in half-integer spin
chains, a consistent renormalization group flow and phase diagram is proposed.Comment: 20 pages 11 figures obtainable from authors, REVTEX 3.
CFD modelling of powder flow in a continuous horizontal mixer
This work presents a continuum model for simulating the flow of powders inside continuous horizontal mixers. The challenge is to adopt a reliable rheological model that allows simulating granular flows accurately. We selected the μ(I)-rheology model. First, we considered a set of granular collapse experiments, showing that the model can successfully reproduce these flows, and also using the experimental results to evaluate the material properties of the powders. Then, we investigated the complex powder flow in continuous horizontal mixers. Here computational cost is a challenge. We showed that the sliding mesh technique is accurate but expensive owing to the rotation of the boundaries, making this method impractical for industrial applications. Therefore, we also employed the multiple reference frame technique, showing that its results are accurate at far lower computational cost. The results section ends with a sensitivity analysis of the mixer solid mass loading to the powder material properties
Recent advances in modelling and control of liquid chromatography
For more than a century, chromatography has been indispensable as a separation method for both analytics and purification. Among the variety of chromatographic techniques, liquid chromatography has a special status owing to its efficiency and versatility, and its status is further enhanced by the continuous improvements of analysers, materials, methods and understanding, all supported by computational approaches. High performance liquid chromatography (HPLC) has always held a special place in pharmaceutical processing, and computational HPLC has been explored since the very early stages of computing, although without having yet reached its full potential. Herein, we provide a comprehensive and critical review of recent developments in designing and operating liquid chromatographic systems, focussing on their modelling approaches and control strategies at large scale
Mathematical modelling of water absorption and evaporation in a pharmaceutical tablet during film coating
It is well understood that during the pharmaceutical aqueous film coating process the amount of liquid water that interacts with the porous tablet core can affect the quality of the final product. Therefore, understanding and simulating the mechanisms of water droplet spreading, absorption and evaporation is crucial for controlling the process and optimising the shelf-life of the tablets. The purpose of the work presented in this paper is to define and describe the spreading, absorption and evaporation phenomena after droplet impingement on a tablet. We divided the droplet behaviour into three phases of different dynamics and duration: the kinematic, capillary and evaporation phases. To model the kinematic phase, we combined and modified 1-D spreading models from the literature which solve the kinetic energy balance equation for the first milliseconds of spreading. For the capillary phase, we simplified and solved the continuity and Navier-Stokes equations using the lubrication approximation theory. Finally, for the evaporation phase, we adopted a modelling approach for the second drying stage of slurry droplets inside a spray dryer. During this stage, one can no longer describe the droplet as a liquid system containing solids, having to regard it as a wet particle with a dry crust and a wet core. In our work, we represented in a novel way the crust as the dry surface of the tablet and the wet core as the wetted area inside the porous matrix. We implemented the mathematical model presented in this work in gPROMS, employing the Modelbuilder platform. Our numerical results (droplet height and spreading, wetting, evaporation front profiles) are in good agreement with recent experimental data that we found in the literature
Mathematical Modeling of Spray Impingement and Film Formation on Pharmaceutical Tablets during Coating
The application of coating films is an important step in the manufacture of pharmaceutical tablets. Understanding the phenomena taking place during coating spray application provides important information that can be used to reduce the number of defective tablets and select the optimal conditions for the coating process. In this work, we investigate spray impact and film spreading on a tablet while this passes through the spray-zone in a rotating coating drum. To simulate spray impingement, we developed an one-dimensional (1D) spreading model that is based on the mechanical energy equation. We assumed the spray to be uniform and we divided it into arrays of droplets that impinge successively on the substrate orthogonally to its surface. In the mechanical energy equation that describes the coating spreading, we accounted for the rate of work done on the surface of the liquid coating film by the impinging droplets that leads to volume change (film spreading and thickness increase). The novel model we propose in this work can calculate the coating spreading rate and thickness. We implemented the mathematical model employing the gPROMS Modelbuilder platform. To study the effect of coating properties and process parameters on the film spreading rate and on the final liquid film thickness, we performed variance-based sensitivity analysis. The model predictions are in good agreement with experimental data found in the literature
Total Cell Wall and Fiber Concentrations of Perennial Glandular-Haired and Eglandular Medicago Populations
Host-plant resistance in alfalfa (Medicago sativa L.) is insufficient for control of the alfalfa weevil (Hypera postica) or the potato leafhopper (Empoasca fabae), two of the most important insect pests of alfalfa. Some wild Medicago species, which have erect glandular hairs, possess adequate host-plant resistance for control of both pests. We established a field trial (Wymore silty clay loam) in 1985 to determine the effects of erect glandular hairs on forage quality of several perennial Medicago species. Glandular and eglandular (without erect glandular hairs) plant populations were selected from the diploids, M. prostrata Jacq. and M. glandulosa David, and the tetraploids, M. glutinosa Bieb., M. sativa × M. glutinosa, and M. sativa × M. prostrata. Eglandular M. sativa ’Riley’ and M. sativa subsp. caerulea (Less, ex Ledeb.) Schmalh. were included as controls. Foliar diseases and insects were controlled. Leaves and stems were separated for three harvests in 1985 and one in 1986. The presence of erect glandular hairs did not significantly affect concentrations of neutral or acid detergent fibers, hemicellulose, lignin, or cellulose of leaves or stems within the species or hybrids tested. Neutral and acid detergent fibers and cellulose concentrations were generally lower in stems and higher in leaves of diploids than in corresponding parts of the tetraploid alfalfa cultivar Riley
The Stellar Content of Obscured Galactic Giant HII Regions V: G333.1--0.4
We present high angular resolution near--infrared images of the obscured
Galactic Giant HII (GHII) region G333.1--0.4 in which we detect an OB star
cluster. For G333.1--0.4, we find OB stars and other massive objects in very
early evolutionary stages, possibly still accreting. We obtained --band
spectra of three stars; two show O type photospheric features, while the third
has no photospheric features but does show CO 2.3 m band--head emission.
This object is at least as hot as an early B type star based on its intrinsic
luminosity and is surrounded by a circumstellar disc/envelope which produces
near infrared excess emission. A number of other relatively bright cluster
members also display excess emission in the --band, indicative of
disks/envelopes around young massive stars. Based upon the O star photometry
and spectroscopy, the distance to the cluster is 2.6 0.4 kpc, similar to
a recently derived kinematic (near side) value. The slope of the --band
luminosity function is similar to those found in other young clusters. The mass
function slope is more uncertain, and we find - for stars with M M where the upper an lower limits are
calculated independently for different assumptions regarding the excess
emission of the individual massive stars. The number of Lyman continuum photons
derived from the contribution of all massive stars in the cluster is 0.2
. The
integrated cluster mass is 1.0
.Comment: 31 pages, including 12 figures and 3 tables. Accepted for publication
in the A
SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases
We construct a family of rotationally invariant, local, S=1/2 Klein
Hamiltonians on various lattices that exhibit ground state manifolds spanned by
nearest-neighbor valence bond states. We show that with selected perturbations
such models can be driven into phases modeled by well understood quantum dimer
models on the corresponding lattices. Specifically, we show that the
perturbation procedure is arbitrarily well controlled by a new parameter which
is the extent of decoration of the reference lattice. This strategy leads to
Hamiltonians that exhibit i) RVB phases in two dimensions, ii) U(1) RVB
phases with a gapless ``photon'' in three dimensions, and iii) a Cantor
deconfined region in two dimensions. We also construct two models on the
pyrochlore lattice, one model exhibiting a RVB phase and the other a U(1)
RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor
typos fixe
Evidence from Identified Particles for Active Quark and Gluon Degrees of Freedom
Measurements of intermediate pT (1.5 < pT < 5.0 GeV/c) identified particle
distributions in heavy ion collisions at SPS and RHIC energies display striking
dependencies on the number of constituent quarks in the corresponding hadron.
One finds that elliptic flow at intermediate pT follows a constituent quark
scaling law as predicted by models of hadron formation through coalescence. In
addition, baryon production is also found to increase with event multiplicity
much faster than meson production. The rate of increase is similar for all
baryons, and seemingly independent of mass. This indicates that the number of
constituent quarks determines the multiplicity dependence of identified hadron
production at intermediate pT. We review these measurements and interpret the
experimental findings.Comment: 8 pages, 5 figures, proceedings for SQM2006 conference in Los Angele
- …