22 research outputs found

    BGS-UKRI briefing note: tryptophan-like fluorescence (TLF) as a rapid in-situ screening tool for assessing faecal contamination risk in groundwater

    Get PDF
    Faecally contaminated drinking water, a leading cause of diarrhoeal diseases, is currently consumed by an estimated 1.8 million people globally1. Diarrhoeal diseases are a leading cause of death for children under five years old2,3. The United Nations’ Sustainable Development Goal (SDG) 6 calls for universal access to safe drinking water. Groundwater is a major source of drinking water globally1 – in many regions it is the only source of drinking water in the dry season – and faecal contamination of groundwater remains a major concern. There is now strong evidence for the suitability of tryptophan-like fluorescence (TLF) for assessing the risk of faecal contamination in groundwater. TLF provides a robust and rapid in-situ screening tool to enable more rapid monitoring of drinking water quality to help assess progress towards SDG 6

    The Cretaceous Continental Intercalaire in central Algeria: subsurface evidence for a fluvial to aeolian transition and implications for the onset of aridity on the Saharan Platform.

    Get PDF
    The Lower Cretaceous Continental Intercalaire of North Africa is a terrestrial to shallow marine continental wedge deposited along the southern shoreline of the Neotethys Ocean. Today it has a wide distribution across the northern Sahara where it has enormous socio-economic importance as a major freshwater aquifer. During the Early Cretaceous major north-south trending basement structures were reactivated in response to renewed Atlantic rifting and in Algeria, faults along the El Biod-Hassi Messaourd Ridge appear to have been particularly important in controlling thickness patterns of the Lower Cretaceous Continental Intercalaire. Subsurface data from the Krechba gas field in Central Algeria shows that the Lower Cretaceous stratigraphy is subdivided into two clear parts. The lower part (here termed the In Salah Formation) is a 200 m thick succession of alluvial deposits with large meandering channels, clearly shown in 3D seismic, and waterlogged flood basins indicated by lignites and gleyed, pedogenic mudstones. The overlying Krechba Formation is a 500 m thick succession of quartz-dominated sands and sandstones whose microstructure indicates an aeolian origin, confirming earlier observations from outcrop. These interbed with brick red, highly oxidised mudstones representing deposition in temporary lakes or lagoons under an arid climate. The switch from fluvial to aeolian sedimentation at Krechba on the Saharan Platform occurred in the late Aptian and Albian and is thus synchronous to a comparable change observed by previous authors in Lower Cretaceous non-marine deposits of NE Spain. This was probably driven by a combination of sea-level fall and the northward shift of global arid belts into western Neotethys caused by oceanic rifting between Africa and South America

    Modelling groundwater/surface-water interaction in a managed riparian chalk valley wetland

    Get PDF
    Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10-ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20-month period. Model results are generally consistent with field observations and include short-term responses to events as well as longer-term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In-channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discusse

    Optimized arrays for 2-D resistivity survey lines with a large number of electrodes

    Get PDF
    Previous studies show that optimized arrays generated using the ‘Compare R’ method have significantly better resolution than conventional arrays. This method determines the optimum set of arrays by selecting those that give the maximum model resolution. The number of possible arrays (the comprehensive data set) increases with the fourth power of the number of electrodes. The optimization method faces practical limitations for 2-D survey lines with more than 60 electrodes where the number of possible arrays exceeds a million. Several techniques are proposed to reduce the calculation time for such survey lines. A single-precision version of the ‘Compare R’ algorithm using a new ranking function reduces the calculation time by two to eight times while providing results similar to the double-precision version. Recent improvements in computer GPU technology can reduce the calculation time by about seven times. The calculation time is reduced by half by using the fact that arrays that are symmetrical about the center of the line produce identical changes in the model resolution values. It is further reduced by more than thirty times by calculating the Sherman–Morrison update for all the possible two-electrode combinations, which are then used to calculate the model resolution values for the four-electrode arrays. The calculation time is reduced by more then ten times by using a subset of the comprehensive data set consisting of only symmetrical arrays. Tests with a synthetic model and field data set show that optimized arrays derived from this subset produce inversion models with differences of less than 10% from those derived using the full comprehensive data set. The optimized data sets produced models that are more accurate than the Wenner–Schlumberger array data sets in all the tests

    Mapping topography and broad vegetation type to characterise the Boxford meadows SSSI (Unit 2)

    Get PDF
    Understanding the dynamic relationship between hydrology and ecology in a complex wetland setting should be considered integral to the sustainable management and conservation of wetland habitats and future water resource planning. Wetland hydrology can exhibit considerable spatial complexity as a result of sub surface and surface heterogeneity. The latter of which may be determined by the relationship between spatial topography variation and broad vegetation distribution. Any study to investigate such a relationship must be at a spatial resolution sufficient to identify patterns in surface topography and vegetation type. In this study state of the art survey technology was used to collect and record for subsequent mapping the topographic and vegetation characteristics of the Boxford lowland chalk groundwater dependent terrestrial ecosystem (GDTE). The resultant survey dataset successfully unveiled distinct patterns in topography and vegetation type. The analysis of the data in a Geographical Information System (GIS) desk confirmed for the first time the presence of paleo-channels and a braided fluvial system within the meadows. In addition the combined survey method gives some indication that the type of vegetation present appears to coincide with some of the more distinctive topographical features. The results demonstrate that combining the field survey campaign alongside desk based GIS analysis is an extremely useful and versatile tool and can provide valuable information to support the decision making process for both further scientific investigation and sustainable habitat management

    In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications

    Get PDF
    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex _ 285, em _ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: _1.57 to _2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent 200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/ variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is recommended for long term, surface water monitoring

    Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence.

    Get PDF
    Open defecation is practised by over 600 million people in India and there is a strong political drive to eliminate this through the provision of on-site sanitation in rural areas. However, there are concerns that the subsequent leaching of excreta from subsurface storage could be adversely impacting underlying groundwater resources upon which rural populations are almost completely dependent for domestic water supply. We investigated this link in four villages undergoing sanitary interventions in Bihar State, India. A total of 150 supplies were sampled for termotolerant (faecal) coliforms (TTC) and tryptophanlike fluorescence (TLF): an emerging real-time indicator of faecal contamination. Sanitary risk inspections were also performed at all sites, including whether a supply was located within 10 m of a toilet, the recommended minimum separation. Overall, 18% of water supplies contained TTCs, 91% of which were located within 10 m of a toilet, 58% had TLF above detection limit, and sanitary risk scores were high. Statistical analysis demonstrated TLF was an effective indicator of TTC presence-absence, with a possibility of TTCs only where TLF exceeded 0.4 mg/L dissolved tryptophan. Analysis also indicated proximity to a toilet was the only significant sanitary risk factor predicting TTC presence-absence and the most significant predictor of TLF. Faecal contamination was considered a result of individual water supply vulnerability rather than indicative of widespread leaching into the aquifer. Therefore, increasing faecal contamination of groundwater-derived potable supplies is inevitable across the country as uptake of onsite sanitation intensifies. Communities need to be aware of this link and implement suitable decentralised low-cost treatment of water prior to consumption and improve the construction and protection of new supplies

    Tracing enteric pathogen contamination in sub-Saharan African groundwater

    Get PDF
    Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4 μg/L in all contaminated sites

    Groundwater recharge influenced by ephemeral river flow and land use in the semiarid Limpopo Province of South Africa

    Get PDF
    Determining the sustainability of groundwater use in drylands with high climate variability is complex. Central to this determination is an understanding of groundwater recharge and associated processes and controls. Groundwater recharge in drylands can occur by diffuse and focused recharge (focused recharge being associated with intense episodic rainfall events and ephemeral river flow, predicted to increase and intensify with climate change). This study evaluated the relative significance and dominant controls on these two recharge processes. Ten groundwater hydrographs with multidecadal observations were collated from the Limpopo Province, South Africa, based on their proximity to river channels and rain gauges, representing diversity in local climate, landscape, vegetation, and hydrogeological conditions. The hydrographs showed that groundwater-level rises are sensitive to rainfall intensity during the rainy season, with generally larger increases after years with large episodic rainfall events, which disproportionately contribute to groundwater replenishment. Recharge processes and annual recharge volumes were quantified using the water-table fluctuation method and the numerical model HYDRUS-1D. This allowed for the inference of additional recharge contributions from focused recharge in proximity to ephemeral rivers, up to a factor of five relative to diffuse recharge. The analysis revealed synchronicity and linear correlation between annual river discharge and recharge close to the river, substantiating the importance of focused recharge close to the river network. The study showed that recharge in drylands is subject to large spatial and temporal variation and that consideration of focused and episodic recharge is critically important for managing groundwater resources at various scales in these regions
    corecore