32 research outputs found

    Measuring <i>KRAS </i>Mutations in Circulating Tumor DNA by Droplet Digital PCR and Next-Generation Sequencing

    Get PDF
    Measuring total cell-free DNA (cfDNA) or cancer-specific mutations herein has presented as new tools in aiding the treatment of cancer patients. Studies show that total cfDNA bears prognostic value in metastatic colorectal cancer (mCRC) and that measuring cancer-specific mutations could supplement biopsies. However, limited information is available on the performance of different methods. Blood samples from 28 patients with mCRC and known KRAS mutation status were included. cfDNA was extracted and quantified with droplet digital polymerase chain reaction (ddPCR) measuring Beta-2 Microglobulin. KRAS mutation detection was performed using ddPCR (Bio-Rad) and next-generation sequencing (NGS, Ion Torrent PGM). Comparing KRAS mutation status in plasma and tissue revealed concordance rates of 79% and 89% for NGS and ddPCR. Strong correlation between the methods was observed. Most KRAS mutations were also detectable in 10-fold diluted samples using the ddPCR. We find that for detection of KRAS mutations in ctDNA ddPCR was superior to NGS both in analysis success rate and concordance to tissue. We further present results indicating that lower amount of plasma may be used for detection of KRAS mutations in mCRC

    Mouse Transcobalamin Has Features Resembling both Human Transcobalamin and Haptocorrin

    Get PDF
    In humans, the cobalamin (Cbl) -binding protein transcobalamin (TC) transports Cbl from the intestine and into all the cells of the body, whereas the glycoprotein haptocorrin (HC), which is present in both blood and exocrine secretions, is able to bind also corrinoids other than Cbl. The aim of this study is to explore the expression of the Cbl-binding protein HC as well as TC in mice. BLAST analysis showed no homologous gene coding for HC in mice. Submaxillary glands and serum displayed one protein capable of binding Cbl. This Cbl-binding protein was purified from 300 submaxillary glands by affinity chromatography. Subsequent sequencing identified the protein as TC. Further characterization in terms of glycosylation status and binding specificity to the Cbl-analogue cobinamide revealed that mouse TC does not bind Concanavalin A sepharose (like human TC), but is capable of binding cobinamide (like human HC). Antibodies raised against mouse TC identified the protein in secretory cells of the submaxillary gland and in the ducts of the mammary gland, i.e. at locations where HC is also found in humans. Analysis of the TC-mRNA level showed a high TC transcript level in these glands and also in the kidney. By precipitation to insolubilised antibodies against mouse TC, we also showed that >97% of the Cbl-binding capacity and >98% of the Cbl were precipitated in serum. This indicates that TC is the only Cbl-binding protein in the mouse circulation. Our data show that TC but not HC is present in the mouse. Mouse TC is observed in tissues where humans express TC and/or HC. Mouse TC has features in common with both human TC and HC. Our results suggest that the Cbl-binding proteins present in the circulation and exocrine glands may vary amongst species

    Plasma Immune Proteins and Circulating Tumor DNA Predict the Clinical Outcome for Non-Small-Cell Lung Cancer Treated with an Immune Checkpoint Inhibitor

    No full text
    Immunotherapy has altered the therapeutic landscape for patients with non-small-cell lung cancer (NSCLC). The immune checkpoint inhibitor pembrolizumab targets the PD-1/PD-L1 signaling axis and produces durable clinical responses, but reliable biomarkers are lacking. Using 115 plasma samples from 42 pembrolizumab-treated patients with NSCLC, we were able to identify predictive biomarkers. In the plasma samples, we quantified the level of 92 proteins using the Olink proximity extension assay and circulating tumor DNA (ctDNA) using targeted next-generation sequencing. Patients with an above-median progression-free survival (PFS) had significantly higher expressions of Fas ligand (FASLG) and inducible T-cell co-stimulator ligand (ICOSLG) at baseline than patients with a PFS below the median. A Kaplan–Meier analysis demonstrated that high levels of FASLG and ICOSLG were predictive of longer PFS and overall survival (OS) (PFS: 10.83 vs. 4.49 months, OS: 27.13 vs. 18.0 months). Furthermore, we identified a subgroup with high expressions of FASLG and ICOSLG who also had no detectable ctDNA mutations after treatment initiation. This subgroup had significantly longer PFS and OS rates compared to the rest of the patients (PFS: 25.71 vs. 4.52 months, OS: 34.62 vs. 18.0 months). These findings suggest that the expressions of FASLG and ICOSLG at baseline and the absence of ctDNA mutations after the start of treatment have the potential to predict clinical outcomes

    A single rainbow trout cobalamin-binding protein stands in for three human binders

    No full text
    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins

    Gene Expression of the EGF System—a Prognostic Model in Non–Small Cell Lung Cancer Patients Without Activating EGFR Mutations

    Get PDF
    OBJECTIVES: Contradicting results have been demonstrated for the expression of the epidermal growth factor receptor (EGFR) as a prognostic marker in non–small cell lung cancer (NSCLC). The complexity of the EGF system with four interacting receptors and more than a dozen activating ligands is a likely explanation. The aim of this study is to demonstrate that the combined network of receptors and ligands from the EGF system is a prognostic marker. MATERIAL AND METHODS: Gene expression of the receptors EGFR, HER2, HER3, HER4, and the ligands AREG, HB-EGF, EPI, TGF-α, and EGF was measured by quantitative polymerase chain reaction in tumor samples from 100 NSCLC patients without EGFR activating mutations. Results were dichotomized into high or low levels of target expression. Coexpression of the ligands and receptors was observed, and a score was developed based on the summed effect of receptors and ligands. Akaike’s information criteria selected the optimal score. Results were correlated with age, sex, stage, histology, performance status, and overall survival. RESULTS: Patients were randomly split 1:1 to create test and validation cohorts. In multivariate analyses, the only individual prognostic marker was EPI (hazard ratio [HR] 0.38 [0.20-0.72], P = .003). The optimal score in the test cohort was validated as a marker of inferior survival in the validation cohort and by bootstrapping. Multivariate analysis confirmed the combined score as a prognostic marker of inferior survival (HR 3.75 [2.17-6.47], P < .00001). CONCLUSION: Our study has developed a model that takes the complexity of the EGF system into account and shows that this model is a strong prognostic marker in NSCLC patients

    Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    No full text
    Background: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesicles displaying various proteins on their membrane surfaces. In addition, they are readily available in blood samples where they constitute potential biomarkers of human diseases, such as cancer. Here, we examine the potential of distinguishing non-small cell lung carcinoma (NSCLC) patients from control subjects based on the differential display of exosomal protein markers. Methods: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa–IV) disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array (EV Array) was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. Results: The EV Array analysis was capable of detecting and phenotyping exosomes in all samples from only 10 µL of unpurified plasma. Multivariate analysis using the Random Forests method produced a combined 30-marker model separating the two patient groups with an area under the curve of 0.83, CI: 0.77–0.90. The 30-marker model has a sensitivity of 0.75 and a specificity of 0.76, and it classifies patients with 75.3% accuracy. Conclusion: The EV Array technique is a simple, minimal-invasive tool with potential to identify lung cancer patients
    corecore