770 research outputs found
Vorticity production and survival in viscous and magnetized cosmologies
We study the role of viscosity and the effects of a magnetic field on a
rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal
magnetohydrodynamic approximation. Our results confirm that viscosity can
generate vorticity in inhomogeneous environments, while the magnetic tension
can produce vorticity even in the absence of fluid pressure and density
gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we
find that viscosity adds to the diluting effect of the universal expansion.
Typically, however, the dissipative viscous effects are confined to relatively
small scales. We also identify the characteristic length bellow which the
viscous dissipation is strong and beyond which viscosity is essentially
negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic
presence is found to slow down the standard decay-rate of linear vortices, thus
leading to universes with more residual rotation than generally anticipated.Comment: Minor changes. References added and updated. Published versio
Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer
Since the initial exploration of soft gamma-ray sky in the 60's, high-energy
celestial sources have been mainly characterized through imaging, spectroscopy
and timing analysis. Despite tremendous progress in the field, the radiation
mechanisms at work in sources such as neutrons stars and black holes are still
unclear. The polarization state of the radiation is an observational parameter
which brings key additional information about the physical process. This is why
most of the projects for the next generation of space missions covering the
tens of keV to the MeV region require a polarization measurement capability. A
key element enabling this capability is a detector system allowing the
identification and characterization of Compton interactions as they are the
main process at play. The hard X-ray imaging spectrometer module, developed in
CEA with the generic name of Caliste module, is such a detector. In this paper,
we present experimental results for two types of Caliste-256 modules, one based
on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed
to linearly polarized beams at the European Synchrotron Radiation Facility.
These results, obtained at 200-300 keV, demonstrate their capability to give an
accurate determination of the polarization parameters (polarization angle and
fraction) of the incoming beam. Applying a selection to our data set,
equivalent to select 90 degrees Compton scattered interactions in the detector
plane, we find a modulation factor Q of 0.78. The polarization angle and
fraction are derived with accuracies of approximately 1 degree and 5%. The
modulation factor remains larger than 0.4 when essentially no selection is made
at all on the data. These results prove that the Caliste-256 modules have
performances allowing them to be excellent candidates as detectors with
polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201
Chandra and RXTE Spectra of the Burster GS 1826-238
Using simultaneous observations from Chandra and RXTE, we investigated the
LMXB GS 1826-238 with the goal of studying its spectral and timing properties.
The uninterrupted Chandra observation captured 6 bursts (RXTE saw 3 of the 6),
yielding a recurrence time of 3.54 +/- 0.03 hr. Using the proportional counter
array on board RXTE, we made a probable detection of 611 Hz burst oscillations
in the decaying phases of the bursts with an average rms signal amplitude of
4.8%. The integrated persistent emission spectrum can be described as the dual
Comptonization of ~ 0.3 keV soft photons by a plasma with kT_e ~ 20 keV and an
optical depth of about 2.6 (interpreted as emission from the accretion disk
corona), plus the Comptonization of hotter ~ 0.8 keV seed photons by a ~ 6.8
keV plasma (interpreted as emission from or near the boundary layer). We
discovered evidence for a neutral Fe K\alpha emission line, and we found
interstellar Fe L_II and Fe L_III absorption features. The burst spectrum can
be fit by fixing the disk Comptonization parameters to the persistent emission
best-fit values, and adding a blackbody. The blackbody/seed photon temperature
at the peak of the burst is ~ 1.8 keV and returns to ~ 0.8 keV over 200 s. The
blackbody radius is consistent with R_bb = 10.3-11.7 km assuming a distance of
6 kpc; however, by accounting for the fraction of the surface that is obscured
by the disk as a function of binary inclination, we determined the source
distance must actually be near 5 kpc in order for the stellar radius to lie
within the commonly assumed range of 10-12 km.Comment: Accepted for publication in ApJ; 13 pages, 6 figure
IFMIF suitability for evaluation of fusion functional materials
The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design.
This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor
BeppoSAX Detection and Follow-up of GRB980425
We present BeppoSAX GRBM and WFC light curves of GRB980425 and NFI follow-up
data taken in 1998 April, May, and November. The first NFI observation has
detected within the 8' radius error box of the GRB an X-ray source positionally
consistent with the supernova SN 1998bw, exploded within a day of GRB980425,
and a fainter X-ray source, not consistent with the position of the supernova.
The former source is detected in the following NFI pointings and exhibits a
decline of a factor of two in six months. If it is associated with SN 1998bw,
this is the first detection of hard X-ray emission from a Type I supernova. The
latter source exhibits only marginally significant variability. Based on these
data, it is not possible to select either source as a firm candidate for the
GRB counterpart.Comment: 2 pages, 1 PostScript figure, submitted to A&AS, Proc. of the
Conference "Gamma-Ray Bursts in the Afterglow Era", held in Rome, 1998
November 3-6. Results concerning 'Source 2' have been update
Turbulent transport in hydromagnetic flows
The predictive power of mean-field theory is emphasized by comparing theory
with simulations under controlled conditions. The recently developed test-field
method is used to extract turbulent transport coefficients both in kinematic as
well as nonlinear and quasi-kinematic cases. A striking example of the
quasi-kinematic method is provided by magnetic buoyancy-driven flows that
produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent
mixing and beyon
Discovery of a Transient Absorption Edge in the X-ray Spectrum of GRB 990705
We report the discovery of a transient equivalent hydrogen column density
with an absorption edge at ~3.8 kiloelectron volts in the spectrum of the
prompt x-ray emission of gamma-ray burst (GRB) 990705. This feature can be
satisfactorily modeled with a photoelectric absorption by a medium located at a
redshift of ~0.86 and with an iron abundance of ~75 times the solar one. The
transient behavior is attributed to the strong ionization produced in the
circumburst medium by the GRB photons. The high iron abundance points to the
existence of a burst environment enriched by a supernova along the line of
sight. The supernova explosion is estimated to have occurred about 10 years
before the burst. Our results agree with models in which GRBs originate from
the collapse of very massive stars and are preceded by a supernova eventComment: 15 pages,3 fig.s, link to the published paper in Science, 290, 953
(2000) through http://tonno.tesre.bo.cnr.it/~amati/curric/node6.html#papsc
- …