51 research outputs found

    Analysis of Gas-Phase Clusters Made from Laser-Vaporized Icosahedral Al−Pd−Mn

    Get PDF
    An icosahedral Al−Pd−Mn quasicrystal sample is laser vaporized to form metal clusters by gas aggregation. The clusters are subsequently laser ionized and mass analyzed in a time-of-flight mass spectrometer. The mass spectra show cluster compositions which are qualitatively similar to that of the sample. This is consistent with a kinetically controlled cluster growth process. Cluster thermodynamic stability is probed by multiphoton ionization/fragmentation, which induces primarily Al and Mn loss. The resulting spectra are composed of a series of Pd-rich Al−Pd clusters. The average cluster composition is 60 (±1)% Pd. This composition is close to a known eutectic in the Al−Pd system. When manganese is seen on these clusters, it is always in units of Mn3. These results are discussed in terms of relative binding strengths in the Al−Pd−Mn alloy system

    Inference of hidden structures in complex physical systems by multi-scale clustering

    Full text link
    We survey the application of a relatively new branch of statistical physics--"community detection"-- to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations.Comment: 25 pages, 16 Figures; a review of earlier work
    • …
    corecore