8 research outputs found

    Local Time Variation in the Large-Scale Structure of Saturn's Magnetosphere

    Get PDF
    The large-scale structure of Saturn's magnetosphere is determined by internal and external factors, including the rapid planetary rotation rate, significant internal hot and cold plasma sources, and varying solar wind pressure. Under certain conditions the dayside magnetospheric magnetic field changes from a dipolar to more disk-like structure, due to global force balance being approximately maintained during the reconfiguration. However, it is still not fully understood which factors dominantly influence this behavior, and in particular how it varies with local time. We explore this in detail using a 2-D force-balance model of Saturn's magnetodisk to describe the magnetosphere at different local time sectors. For model inputs, we use recent observational results that suggest a significant local time asymmetry in the pressure of the hot (>3 keV) plasma population, and magnetopause location. We make calculations under different solar wind conditions, in order to investigate how these local time asymmetries influence magnetospheric structure for different system sizes. We find significant day/night asymmetries in the model magnetic field, consistent with recent empirical studies based on Cassini magnetometer observations. We also find dawn-dusk asymmetries in equatorial current sheet thickness, with the varying hot plasma content and magnetodisk radius having comparable influence on overall structure, depending on external conditions. We also find significant variations in magnetic mapping between the ionosphere and equatorial disk, and ring current intensity, with substantial enhancements in the night and dusk sectors. These results have consequences for interpreting many magnetospheric phenomena that vary with local time, such as reconnection events and auroral observations

    The Magnetodisk Regions of Jupiter and Saturn

    No full text
    The rapidly rotating magnetospheres of the gas giant planets, Jupiter and Saturn, are natural laboratories for learning about magnetized plasmas. Several spacecraft missions have provided a wealth of observations that confirm the central role of the “magnetodisk” structure in these systems. This region consists of a magnetic field generated by an extended current sheet, and the associated plasma disk. Magnetodisks continually change in response to various mechanisms – including the rotating, tilted dipole of the parent planet; the magnetopause currents; and, for Saturn in particular, rotating systems of current that communicate energy between the planet's atmosphere and the disk. In this review, we provide a summary of some of the mechanisms that determine magnetodisk structure and dynamics at both Jupiter and Saturn, and their observational signatures. We then discuss approaches to modeling the magnetic fields and currents in the middle magnetosphere regions. We discuss the influence of the magnetodisk on magnetospheric compressibility, and investigate the roles of planetary rotation and energetic particles in determining plasmadisk structure

    Primary Splenic and Nodal Marginal Zone Lymphoma:

    No full text

    Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters

    No full text
    There is increasing evidence that the biochemical and cellular phenomena induced by blood/membrane/dialysate interactions contribute to dialysis-related intradialytic and long-term complications. However, there is a lack of large, prospective, randomized trials comparing biocompatible and bioincompatible membranes, and convective and diffusive treatment modalities. The primary aim of this prospective, randomized trial was to evaluate whether the use of polysulfone membrane with bicarbonate dialysate offers any advantages (in terms of treatment tolerance, nutritional parameters and pre-treatment beta(2)-microglobulin levels) over a traditional membrane (Cu-prophan(R)). A secondary aim was to assess whether the use of more sophisticated methods consisting of a biocompatible synthetic membrane with different hydraulic permeability at different ultrafiltration rate (high-flux hemodialysis and hemodiafiltration) offers any further advantages. Seventy-one Centers were involved and stratified according to the availability of only the first two or all four of the following techniques: Cuprophan(R) hemodialysis (Cu-HD), low flux polysulfone hemodialysis (LfPS-HD), high-flux polysulfone high-flux hemodialysis (HfPS-HD), and high-flux polysulfone hemodiafiltration (HfPS-HDF). The 380 eligible patients were randomized to one of the two or four treatments (132 to Cu-HD, 147 to LfPS-HD, 51 to HfPS-HD and 50 to HfPS-HDF). The follow-up was 24 months. No statistical difference was observed in the algebraic sum of the end points between bicarbonate dialysis with Cuprophan(R) or with low-flux polysulfone, or among the four dialysis methods under evaluation. There was a significant decrease in pre-dialysis plasma beta(2)-microglobulin levels in high-flux dialysis of 9.04+/-10.46 mg/liter (23%) and in hemodiafiltration of 6.35+/-12.28 mg/liter (16%), both using high-flux polysulfone membrane in comparison with Cuprophan(R) and low-flux polysulfone membranes (P=0.032). The significant decrease in pre-dialysis plasma beta(2)-microglobulin levels could have a clinical impact when one considers that beta(2)-microglobulin accumulation and amyloidosis are important long-term dialysis-related complications
    corecore