9 research outputs found

    Fungicidal activity of recombinant javanicin against Cryptococcus neoformans is associated with intracellular target(s) involved in carbohydrate and energy metabolic processes

    Get PDF
    The occurrence of Cryptococcus neoformans, the human fungal pathogen that primarily infects immunocompromised individuals, has been progressing at an alarming rate. The increased incidence of infection of C. neoformans with antifungal drugs resistance has become a global concern. Potential antifungal agents with extremely low toxicity are urgently needed. Herein, the biological activities of recombinant javanicin (r-javanicin) against C. neoformans were evaluated. A time-killing assay was performed and both concentration- and time-dependent antifungal activity of r-javanicin were indicated. The inhibitory effect of the peptide was initially observed at 4 h post-treatment and ultimately eradicated within 36 to 48 h. Fungal outer surface alteration was characterized by the scanning electron microscope (SEM) whereas a negligible change with slight shrinkage of external morphology was observed in r-javanicin treated cells. Confocal laser scanning microscopic analysis implied that the target(s) of r-javanicin is conceivably resided in the cell thereby allowing the peptide to penetrate across the membrane and accumulate throughout the fungal body. Finally, cryptococcal cells coped with r-javanicin were preliminarily investigated using label-free mass spectrometry-based proteomics. Combined with microscopic and proteomics analysis, it was clearly elucidated the peptide localized in the intracellular compartment where carbohydrate metabolism and energy production associated with glycolysis pathway and mitochondrial respiration, respectively, were principally interfered. Overall, r-javanicin would be an alternative candidate for further development of antifungal agents

    Cloning and Expression of a Recombinant Single-Chain Variable Fragment Antibody Specific to Hemoglobin Bart’s

    Get PDF
    Hemoglobin Bart’s (γ4 ), an abnormal Hb, is a homotetramer of γ-globin chains . Τhe amount of this abnormal Hb in blood circulation can be used as an indicator for the presence of different genotypes of α-thalassemias. We successfully cloned and expressed a novel recombinant scFv antibody derived from mouse hybridoma producing monoclonal antibody highly specific to Hb Bart’s. The genes encoding variable regions of the heavy (VH) and light (VL) chains were cloned and identified by DNA sequencing. The VH and VL genes were connected via a short linker to form the full length VH-linker-VL construct and ligated into pET28a. The His tag-scFv fusion protein was expressed in E. coli and purified by affinity chromatography. The recombinant scFv antibody was mostly expressed as inclusion bodies with the predicted molecular weight of 28 kDa. This scFv antibody was very specific by reacting with Hb Bart’s (γ4) but not cross-react with HbA (α2β2), HbF (α2γ2), HbS (α2β2 S ), HbE (α2β2 E ), HbA2 (α2δ2 ), and HbH (β4 ), as determined by Western blot. The detection sensitivity of this scFv antibody was 5 µg/µl of Hb Bart’s by dot blot ELISA. The scFv antibody should be useful in development of an immunoassay with high sensitivity and specificity for the diagnosis of α-thalassemias

    In Vitro Antimycobacterial Activity of Human Lactoferrin-Derived Peptide, D-hLF 1-11, against Susceptible and Drug-Resistant Mycobacterium tuberculosis and Its Synergistic Effect with Rifampicin

    Full text link
    Tuberculosis is a highly contagious disease caused by the Mycobacterium tuberculosis complex (MTBC). Although TB is treatable, multidrug-resistant, extensively drug-resistant, and totally drug-resistant forms of M. tuberculosis have become a new life-threatening concern. New anti-TB drugs that are capable of curing these drug-resistant strains are urgently needed. The purpose of this study is to determine the antimycobacterial activity of D-enantiomer human lactoferricin 1-11 (D-hLF 1-11) against mycobacteria in vitro using a 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide colorimetric assay, resazurin microplate assay, and microscopic observation drug susceptibility assay. Three previously described antimicrobial peptides, protegrin-1, AK 15-6, and melittin, with potent anti-TB activity, were included in this study. The findings suggest that D-hLF 1-11 can inhibit the growth of M. tuberculosis with a minimum inhibitory concentration of 100–200 µg/mL in susceptible, isoniazid (INH)-monoresistant, rifampicin (RF)-monoresistant, and MDR strains. The peptide can also inhibit some nontuberculous mycobacteria and other MTBC in similar concentrations. The antibiofilm activity of D-hLF 1-11 against the biofilm-forming M. abscessus was determined by crystal violet staining, and no significant difference is observed between the treated and untreated biofilm control. The checkerboard assay was subsequently carried out with M. tuberculosis H37Rv and the results indicate that D-hLF 1-11 displays an additive effect when combined with INH and a synergistic effect when combined with RF, with fractional inhibitory concentration indices of 0.730 and 0.312, respectively. The red blood cell hemolytic assay was initially applied for the toxicity determination of D-hLF 1-11, and negligible hemolysis (<1%) was observed, despite a concentration of up to 4 mg/mL being evaluated. Overall, D-hLF 1-11 has potential as a novel antimycobacterial agent for the future treatment of drug-sensitive and drug-resistant M. tuberculosis infections

    Direct Detection of Streptococcus suis from Cerebrospinal Fluid, Positive Hemoculture, and Simultaneous Differentiation of Serotypes 1, 1/2, 2, and 14 within Single Reaction

    Full text link
    Streptococcus suis is an emerging zoonotic bacterium causing septicemia and meningitis in humans. Due to rapid disease progression, high mortality rate, and many underdiagnosed cases by time-consuming routine identification methods, alternative diagnostic testing is essential. Among 29 broadly accepted S. suis serotypes, serotypes 2 and 14 are high prevalent; however, many PCR assays showed an inability to differentiate serotype 2 from 1/2, and 1 from 14. In this study, we developed and validated a new multiplex PCR assay that facilitates the identification of only the 29 true serotypes of S. suis and simultaneously differentiates serotypes 1, 1/2, 2, and 14 within a single reaction. Importantly, the multiplex PCR could detect S. suis directly from positive hemocultures and CSF. The results revealed high sensitivity, specificity, and 100% accuracy with almost perfect agreement (κ = 1.0) compared to culture and serotyping methods. Direct detection enables a decrease in overall diagnosis time, rapid and efficient treatment, reduced fatality rates, and proficient disease control. This multiplex PCR offers a rapid, easy, and cost-effective method that can be applied in a routine laboratory. Furthermore, it is promising for developing point-of-care testing (POCT) for S. suis detection in the future

    Nano-Delivery System of Ethanolic Extract of Propolis Targeting <i>Mycobacterium tuberculosis</i> via Aptamer-Modified-Niosomes

    Full text link
    Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately −20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management

    Combined Locked Nucleic Acid Probes and High-Resolution Melting Curve Analysis for Detection of Rifampicin-Resistant Tuberculosis in Northern Thailand

    Full text link
    Rifampicin-resistant tuberculosis (RR-TB) has become a major threat globally. This study aims to develop a new assay, RIF-RDp, to enhance the detection of RR-TB based on combined locked nucleic acid (LNA) probes with high-resolution melting curve analysis (HRM). Two new LNA probes were designed to target the class-III and IV mutations of rpoB, H526D, and D516V. LNA probes showed 100% specificity in the detection of mutant targets among characterized and blinded Mycobacterium tuberculosis (Mtb) isolates. The performance of RIF-RDp was evaluated using 110 blinded clinical Mtb isolates in northern Thailand against drug-susceptibility testing (DST), DNA sequencing, and a commercial real-time PCR kit. This assay showed sensitivity and specificity of 94.55% and 98.18% compared to DST, and 96.36% and 100% compared to DNA sequencing. The efficacy of RIF-RDp was comparable to the commercial kit and DNA sequencing. The Cohen&rsquo;s Kappa statistic showed almost perfect agreement between RIF-RDp and the commercial kit (&kappa; = 0.95), and RIF-RDp and DNA sequencing (&kappa; = 0.96). Furthermore, this is the first report of the rare mutation profiles, S531W, and a triple codon deletion (510&ndash;512) in northern Thailand. According to high accuracy, the RIF-RDp assay may render an easy-to-use, low-cost, and promising diagnostics of RR-TB in the future
    corecore