3 research outputs found
Pneumococcal colonisation and pneumonia severity in hospitalised Cambodian children following introduction of the 13-valent pneumococcal conjugate vaccine
Objectives
This study sought to characterize pneumococcal colonization and clinical/radiological features in Cambodian children admitted to hospital with an illness compatible with pneumonia following national introduction of the 13-valent pneumococcal conjugate vaccine (PCV13).
Methods
Children aged 0–59 months admitted to Angkor Hospital for Children who met the World Health Organization (WHO) case definition for clinical pneumonia were enrolled over a 3-year period. Clinical, radiological and vaccination data were collected at enrolment. A nasopharyngeal swab was collected for detection of pneumococcal colonization using the WHO standard culture method.
Results
Between 1 September 2015 and 31August 2018, 2209 analysable illness episodes were enrolled. Pneumococci were detected in 943/2209 (42.7%) children. PCV13 serotypes were detected less frequently in children who had been vaccinated appropriately for their age compared with undervaccinated children: 309/567 (53.6%) vs 216/342 (63.2%) (P=0.006). Age-appropriate PCV13 vaccination was negatively associated with hypoxic presentation [adjusted odds ratio (aOR) 0.72, 95% confidence interval (CI) 0.60–0.87; P=0.0006] and primary endpoint pneumonia on chest x ray (aOR 0.69, 95% CI 0.54–0.90; P=0.006).
Conclusions
The introduction of PCV13 in Cambodia was associated with a decline in vaccine serotype nasopharyngeal colonization, and clinical and radiological severity in children hospitalized with clinical pneumonia
A Clinically Oriented antimicrobial Resistance surveillance Network (ACORN): pilot implementation in three countries in Southeast Asia, 2019-2020
Background: Case-based surveillance of antimicrobial resistance (AMR) provides more actionable data than isolate- or sample-based surveillance. We developed A Clinically Oriented antimicrobial Resistance surveillance Network (ACORN) as a lightweight but comprehensive platform, in which we combine clinical data collection with diagnostic stewardship, microbiological data collection and visualisation of the linked clinical-microbiology dataset. Data are compatible with WHO GLASS surveillance and can be stratified by syndrome and other metadata. Summary metrics can be visualised and fed back directly for clinical decision-making and to inform local treatment guidelines and national policy.
Methods: An ACORN pilot was implemented in three hospitals in Southeast Asia (1 paediatric, 2 general) to collect clinical and microbiological data from patients with community- or hospital-acquired pneumonia, sepsis, or meningitis. The implementation package included tools to capture site and laboratory capacity information, guidelines on diagnostic stewardship, and a web-based data visualisation and analysis platform.
Results: Between December 2019 and October 2020, 2294 patients were enrolled with 2464 discrete infection episodes (1786 community-acquired, 518 healthcare-associated and 160 hospital-acquired). Overall, 28-day mortality was 8.7%. Third generation cephalosporin resistance was identified in 54.2% (39/72) of E. coli and 38.7% (12/31) of K. pneumoniae isolates. Almost a quarter of S. aureus isolates were methicillin resistant (23.0%, 14/61). 290/2464 episodes could be linked to a pathogen, highlighting the level of enrolment required to achieve an acceptable volume of isolate data. However, the combination with clinical metadata allowed for more nuanced interpretation and immediate feedback of results.
Conclusions: ACORN was technically feasible to implement and acceptable at site level. With minor changes from lessons learned during the pilot ACORN is now being scaled up and implemented in 15 hospitals in 9 low- and middle-income countries to generate sufficient case-based data to determine incidence, outcomes, and susceptibility of target pathogens among patients with infectious syndromes
ACORN (A Clinically-Oriented Antimicrobial Resistance Surveillance Network): a pilot protocol for case based antimicrobial resistance surveillance
Background: Antimicrobial resistance (AMR) / drug resistant infections (DRIs) are a major global health priority. Surveillance data is critical to inform infection treatment guidelines, monitor trends, and to assess interventions. However, most existing AMR / DRI surveillance systems are passive and pathogen-based with many potential biases. Addition of clinical and patient outcome data would provide considerable added value to pathogen-based surveillance.
Methods: The aim of the ACORN project is to develop an efficient clinically-oriented AMR surveillance system, implemented alongside routine clinical care in hospitals in low- and middle-income country settings. In an initial pilot phase, clinical and microbiology data will be collected from patients presenting with clinically suspected meningitis, pneumonia, or sepsis. Community-acquired infections will be identified by daily review of new admissions, and hospital-acquired infections will be enrolled during weekly point prevalence surveys, on surveillance wards. Clinical variables will be collected at enrolment, hospital discharge, and at day 28 post-enrolment using an electronic questionnaire on a mobile device. These data will be merged with laboratory data onsite using a flexible automated computer script. Specific target pathogens will be Streptococcus pneumoniae, Staphylococcus aureus, Salmonella spp., Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. A bespoke browser-based app will provide sites with fully interactive data visualisation, analysis, and reporting tools.
Discussion: ACORN will generate data on the burden of DRI which can be used to inform local treatment guidelines / national policy and serve as indicators to measure the impact of interventions. Following development, testing and iteration of the surveillance tools during an initial six-month pilot phase, a wider rollout is planned