3 research outputs found

    How to Abuse and Fix Authenticated Encryption Without Key Commitment

    Get PDF
    Authenticated encryption (AE) is used in a wide variety of applications, potentially in settings for which it was not originally designed. Recent research tries to understand what happens when AE is not used as prescribed by its designers. A question given relatively little attention is whether an AE scheme guarantees ``key commitment\u27\u27: ciphertext should only decrypt to a valid plaintext under the key used to generate the ciphertext. Generally, AE schemes do not guarantee key commitment as it is not part of AE\u27s design goal. Nevertheless, one would not expect this seemingly obscure property to have much impact on the security of actual products. In reality, however, products do rely on key commitment. We discuss three recent applications where missing key commitment is exploitable in practice. We provide proof-of-concept attacks via a tool that constructs AES-GCM ciphertext which can be decrypted to two plaintexts valid under a wide variety of file formats, such as PDF, Windows executables, and DICOM. Finally we discuss two solutions to add key commitment to AE schemes which have not been analyzed in the literature: a generic approach that adds an explicit key commitment scheme to the AE scheme, and a simple fix which works for AE schemes like AES-GCM and ChaCha20Poly1305, but requires separate analysis for each scheme

    Targeting natural killer cells and natural killer T cells in cancer.

    No full text
    International audienceNatural killer (NK) cells and natural killer T (NKT) cells are subsets of lymphocytes that share some phenotypical and functional similarities. Both cell types can rapidly respond to the presence of tumour cells and participate in antitumour immune responses. This has prompted interest in the development of innovative cancer therapies that are based on the manipulation of NK and NKT cells. Recent studies have highlighted how the immune reactivity of NK and NKT cells is shaped by the environment in which they develop. The rational use of these cells in cancer immunotherapies awaits a better understanding of their effector functions, migratory patterns and survival properties in humans

    Targeting natural killer cells and natural killer T cells in cancer

    No full text
    corecore