70 research outputs found
Fabrication of TiO2 nanotubes on Ti spheres using bipolar electrochemistry
In this work, the anodization of Ti spheres using bipolar electrochemistry is reported for the first time. TiO2 nanotubes were found over the entire surface area of the Ti spheres when a square-wave potential was employed. The TiO2 nanotubes were similar to 77 nm in inner diameter and had a thickness of similar to 2 mu m on the extremities of the Ti spheres. Due to their increased surface area, the Ti spheres covered with TiO2 nanotubes had a rate constant for the photocatalytic degradation of methylene blue which was approximately 2.15 times higher than that of non-anodized Ti spheres with a thin thermal oxide layer
TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing
The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F− ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment
Intrinsic properties of high -aspect ratio single- and double -wall anodic TiO 2 nanotube layers annealed at different temperatures
TiO2 nanotube layers of different thicknesses and tube wall morphologies exploited. Single-wall nanotubes were obtained by chemical etching of double-wall ones. Photocurrents, structure, optical and electronic properties of tubes were compared
Scaling up anodic TiO2 nanotube layers - Influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene
In this work, the preparation of homogenous TiO2 nanotube (TNT) layers with different thicknesses via anodization on Ti substrates with a large geometrical area of two times 5 cm x 10 cm (i.e. both sides of the Ti substrate) is shown for the first time. TNT layers with four different thicknesses of similar to 0.65 mu m, similar to 1 mu m, similar to 7 mu m, and similar to 14 mu m were prepared with excellent conformality and homogeneity over the anodized area. These TNT layers were successfully employed as photocatalysts for the degradation of hexane and benzene as model compounds in the gas phase under ISO standards, showing an increase of the conversion for both model compounds with the TNT layer thickness. While a stable hexane conversion was observed for all TNT layers during the measuring time of three hours, in case of benzene degradation an initial conversion decrease was monitored before the conversion stabilized. Despite this trend, SEM and XPS analyses did not reveal any significant amount of reaction products on the TNT layer surface
Bismuth Oxychloride Nanoplatelets by Breakdown Anodization
Herein, the synthesis of BiOCl nanoplatelets of various
dimensions is demonstrated. These materials were prepared by
anodic oxidation of Bi ingots in diluted HCl under dielectric breakdown
conditions, triggered by a sufficiently high anodic field. Additionally, it
is shown that the use of several other common diluted acids (HNO3,
H2SO4, lactic acid) resulted in the formation of various different
nanostructures. The addition of NH4F to the acidic electrolytes
accelerated the growth rate resulting in bismuth based nanostructures
with comparably smaller dimensions and an enormous volume
expansion observed during the growth. On the other hand, the
addition of lactic acid to the acidic electrolytes decelerated the oxide
growth rate. The resulting nanostructures were characterized using
SEM, XRD and TEM. BiOCl nanoplatelets received by anodization in
1 M HCl were successfully employed for the photocatalytic
decomposition of methylene blue dye and showed a superior
performance compared to commercially available BiOCl powder with
a similar crystalline structure, confirming its potential as a visible light
photocatalyst
Anodic TiO2 nanotube layers decorated by Pd nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation
Herein, we report the performance of Pd nanoparticles (NPs) prepared by Atomic Layer Deposition (ALD) as a catalyst for methanol electro-oxidation. Pd NPs were decorated onto anodic TiO2 nanotube (TNT) layers as supporting material that possess a large available surface area and direct electrical contact via the underlying titanium foil. Different Pd loadings (150 - 300 - 450 - 600 ALD cycles) show different particles sizes ranging between 7 and 12 nm, as revealed by transmission electron microscopy. Coalescence dominated visibly from 450 ALD cycles, which led to a porous Pd layer all along the TNT walls rather than the growth of individual particles. Electrocatalytic performance was investigated by cyclic voltammetry (CV), where the catalytic activity increased proportional with Pd loading up to the highest values for 400 and 450 cycles, whereas a further increase in the number of ALD cycles (N-ALD) did not show any additional improvement in methanol oxidation current densities. TNT layers decorated with 400, 450 and 600 Pd ALD cycles show featureless curves suggesting complete anti-poisoning ability or possibly a proof of a direct conversion from CH3OH to CO2 (without any intermediate byproducts). The lack of an oxidation peak during the anodic scan and therefore a reduction peak during the cathodic scan, confirms Pd NPs (stabilized by TiO2) efficiently utilize OHads and chemisorbed CH3OH in a way that its CO poisoning was inhibited. As a result, the tuned high surface area TNT layers exhibited excellent performance as a supporting material for Pd NPs against formation of electrochemical poisoning species. Finally, the mechanism of the TNT layers interaction with Pd NPs, which led to the propelling methanol oxidation reaction without loss in performance over cycling is postulated
Anodization of electrodeposited titanium films towards TiO2 nanotube layers
Ti films electrodeposited on Ni foils from molten salts were anodized towards TiO2 nanotube formation for the first time. The resulting TiO2 nanotube (TNT) layers were compared with TNT layers prepared under identical conditions on Ti foils by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) measurements, X-ray photoelectron spectroscopy (XPS), and photocurrent measurements. No significant differences were found between the TNT layers prepared on the two different substrates. Electrodeposited Ti films prepared in this way could thus be a viable option for anodization purposes
- …