3 research outputs found

    Advance Trends in Targeting Homology-Directed Repair for Accurate Gene Editing: An Inclusive Review of Small Molecules and Modified CRISPR-Cas9 Systems

    Get PDF
    Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies. Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems. Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR. Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems

    Original Article 128 128 An Association Study on IL16 Gene Polymorphisms with the Risk of Sporadic Alzheimer's Disease

    No full text
    Abstract Background: is an important regulator of T cell activation and was reported to act as a chemoattractant agent. There are evidences that IL16 can control the neuroinflammatory processes in Alzheimer's Disease (AD). This study was performed to investigate the role or association of IL16 polymorphisms, rs11556218 and rs4778889 with the risk of late-onset Alzheimer's disease (LOAD) in Iranian population. Methods: Totally, 148 AD patients and 137 nondemented and age-matched subjects were recruited in this study. Genotyping of rs11556218 T/G and rs4778889 T/C polymorphisms was performed by PCR-RFLP method using the NdeI and AhdI restriction enzymes, respectively. Results: Statistical analysis of rs11556218 genotypes showed a protective effect against AD in the heterozygote genotype (p=0.001, OR=0.16) as well as rs4778889 (p=0.001, OR=0.23). Frequency of rs11556218 allele T was higher in controls than patients (p= 0.001, OR=0.32). However, there was no significant difference in the frequencies of rs4778889 alleles between the AD patients and controls. Conclusion: Our results indicate that the rs11556218 and rs4778889 polymorphisms have a protective role in the development of sporadic AD in Iranian population
    corecore