25 research outputs found

    Demonstration of CO2 conversion to synthetic transport fuel at flue gas concentrations

    Get PDF
    A mixture of 1-and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO 2 utilization step uses dry, dilute carbon dioxide (12% CO 2 in nitrogen) similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO 2 , this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO 2 to butanol requires significantly less hydrogen than CO 2 to octanes, there is a potentially reduced burden on the so-called hydrogen economy

    Corrosion in CO 2

    No full text
    International audienceCO2 capture and storage plays an important part in industrial strategies for the mitigation of greenhouse gas emissions. CO2 post-combustion capture with alkanolamines is well adapted for the treatment of large industrial point sources using combustion of fossil fuels for power generation, like coal or gas fired power plants, or the steel and cement industries. It is also one of the most mature technologies to date, since similar applications are already found in other types of industries like acid gas separation, although not at the same scale. Operation of alkanolamine units for CO2 capture in combustionfumes presents several challenges, among which corrosion control plays a great part. It is the aim of this paper to present a review of current knowledge on this specific aspect. In a first part, lessons learnt from several decades of use of alkanolamines for natural gas separation in the oil and gas industry are discussed. Then, the specificities of CO2 post-combustion capture are presented, and their consequences on corrosion risks are discussed. Corrosion mitigation strategies, and research and development efforts to find new and more efficient solvents are also highlighted. In a last part,concerns about CO2 transport and geological storage are discussed, with recommendations on CO2 quality and concentration of impurities
    corecore