6 research outputs found

    Enhancing Horticultural Crops through Genome Editing: Applications, Benefits, and Considerations

    No full text
    Genome editing has emerged as a powerful tool for accelerating crop improvement in horticultural crops by enabling precise modifications to their genetic makeup. This review provides an in-depth exploration of the applications, methodologies, and potential impacts of genome editing in horticulture. The review focuses on three major genome editing tools in horticulture, CRISPR-Cas9, TALENs, and ZFNs. The underlying mechanisms, applications, and potential challenges associated with each tool are discussed in detail. CRISPR-Cas9, being a versatile and widely used system, has the potential to enhance traits such as disease resistance, abiotic stress tolerance, nutritional content, and yield in horticultural crops. TALENs and ZFNs, although less commonly used, offer alternative options for targeted DNA modifications, and have demonstrated success in specific applications. We emphasize the potential benefits of genome editing in horticulture, including improved crop productivity, quality, and nutritional value. However, challenges such as off-target effects, delivery methods, and regulatory frameworks need to be addressed for the full realization of this technology’s potential. This review serves as a valuable resource for researchers, policymakers, and stakeholders, providing insights into the opportunities and complexities associated with harnessing genome editing for enhanced traits in horticultural crops. By navigating these challenges, genome editing can contribute to sustainable advancements in horticulture, benefiting both producers and consumers worldwide

    Effect of PONNEEM# on Spodoptera litura (Fab.) and its compatibility with Trichogramma chilonis Ishii

    No full text
    Antifeedant and growth regulating activities of PONNEEM, an oil formulation containing neem and pungam (karanj) oils were evaluated along with individual neem and karanj oils and Nimbicidine, a commercial neem-based pesticide against fourth instar larvae of Spodoptera litura (Fab.). Among all the treatments, PONNEEM recorded the maximum antifeedant activity (88.6%) at 0.6%. Neem and karanj individual treatments as well as PONNEEM extended larval duration compared to control. Pupal weight and fecundity were significantly reduced and pupal period was greatly increased by PONNEEM treatment compared to other treatments. The PONNEEM was found to be compatible with Trichogramma chilonis Ishii, an egg parasitoid of many lepidopteran pests, at 0.15, 0.3 and 0.5% concentrations. PONNEEM did not affect the parasitoid emergence significantly at 0.3% concentration compared to control. PONNEEM also showed growth disruption activity against fourth instar larvae
    corecore