776 research outputs found
Dynamic response studies on aggregation and breakage dynamics of colloidal dispersions in stirred tanks
Aggregation and breakage of aggregates of fully destabilized polystyrene latex particles in turbulent flow was studied experimentally in both batch and continuous stirred tanks using small-angle static light scattering. It was found that the steady-state values of the root-mean-square radius of gyration are fully reversible upon changes of stirring speed as well as solid volume fraction. Steady-state values of the root-mean-square radius of gyration were decreasing with decreasing solid volume fraction as well as with increasing stirring speed. Moreover, it was found that the steady-state structure and shape of the aggregates is not influenced by the applied stirring speed
Accounting for both electron--lattice and electron--electron coupling in conjugated polymers: minimum total energy calculations on the Hubbard--Peierls hamiltonian
Minimum total energy calculations, which account for both electron--lattice
and electron--electron interactions in conjugated polymers are performed for
chains with up to eight carbon atoms. These calculations are motivated in part
by recent experimental results on the spectroscopy of polyenes and conjugated
polymers and shed light on the longstanding question of the relative importance
of electron--lattice vs. electron--electron interactions in determining the
properties of these systems.Comment: 6 pages, Plain TeX, FRL-PSD-93GR
Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes
Single-walled carbon nanotubes are strongly correlated systems with large
Coulomb repulsion between two electrons occupying the same orbital.
Within a molecular Hamiltonian appropriate for correlated -electron
systems, we show that optical excitations polarized parallel to the nanotube
axes in the so-called metallic single-walled carbon nanotubes are to excitons.
Our calculated absolute exciton energies in twelve different metallic
single-walled carbon nanotubes, with diameters in the range 0.8 - 1.4 nm, are
in nearly quantitative agreement with experimental results. We have also
calculated the absorption spectrum for the (21,21) single-walled carbon
nanotube in the E region. Our calculated spectrum gives an excellent fit
to the experimental absorption spectrum. In all cases our calculated exciton
binding energies are only slightly smaller than those of semiconducting
nanotubes with comparable diameters, in contradiction to results obtained
within the {\it ab initio} approach, which predicts much smaller binding
energies. We ascribe this difference to the difficulty of determining the
behavior of systems with strong on-site Coulomb interactions within theories
based on the density functional approach. As in the semiconducting nanotubes we
predict in the metallic nanotubes a two-photon exciton above the lowest
longitudinally polarized exciton that can be detected by ultrafast pump-probe
spectroscopy. We also predict a subgap absorption polarized perpendicular to
the nanotube axes below the lowest longitudinal exciton, blueshifted from the
exact midgap by electron-electron interactions
Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition
We present exact diagonalization results on a modified Peierls-Hubbard model
for the neutral-ionic phase transition. The ground state potential energy
surface and the infrared intensity of the Peierls mode point to a strong,
non-linear electron-phonon coupling, with effects that are dominated by the
proximity to the electronic instability rather than by electronic correlations.
The huge infrared intensity of the Peierls mode at the ferroelectric
transition is related to the temperature dependence of the dielectric constant
of mixed-stack organic crystals.Comment: 4 pages, 4 figure
Spin-Peierls Dimerization of a s=1/2 Heisenberg Antiferromagnet on a Square Lattice
Dimerization of a spin-half Heisenberg antiferromagnet on a square lattice is
investigated for several possible dimerized configurations, some of which are
shown to have lower ground state energies than the others. In particular, the
lattice deformations resulting in alternate stronger and weaker couplings along
both the principal axes of a square lattice are shown to result in a larger
gain in magnetic energy. In addition, a `columnar' configuration is shown to
have a lower ground state energy and a faster increase in the energy gap
parameter than a `staggered' configuration. The inclusion of unexpanded
exchange coupling leads to a power law behaviour for the magnetic energy gain
and energy gap, which is qualitatively different from that reported earlier.
Instead of increasing as , the two quantities depend on
as This is true both in the near critical
regime as well as in the far regime . It is suggested that the unexpanded exchange coupling is as much a source
of the logarithmic dependence as a correction due to the contribution of
umklapp processes. Staggered magnetization is shown to follow the same -dependence in all the configurations in the small -regime, while for
, it follows the power law .Comment: 12 pages, 7 Postscript figures, RevTex forma
Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model
We have carried out Density Matrix Renormalization Group (DMRG) calculations
on the ground state of long polyacene oligomers within a Pariser-Parr-Pople
(PPP) Hamiltonian. The PPP model includes long-range electron correlations
which are required for physically realistic modeling of conjugated polymers. We
have obtained the ground state energy as a function of the dimerization
and various correlation functions and structure factors for
. From energetics, we find that while the nature of the Peierls'
instabilityin polyacene is conditional and strong electron correlations enhance
the dimerization. The {\it cis} form of the distortion is favoured over the
{\it trans} form. However, from the analysis of correlation functions and
associated structure factors, we find that polyacene is not susceptible to the
formation of a bond order wave (BOW), spin density wave (SDW) or a charge
density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure
Excitons in quasi-one dimensional organics: Strong correlation approximation
An exciton theory for quasi-one dimensional organic materials is developed in
the framework of the Su-Schrieffer-Heeger Hamiltonian augmented by short range
extended Hubbard interactions. Within a strong electron-electron correlation
approximation, the exciton properties are extensively studied. Using scattering
theory, we analytically obtain the exciton energy and wavefunction and derive a
criterion for the existence of a exciton. We also systematically
investigate the effect of impurities on the coherent motion of an exciton. The
coherence is measured by a suitably defined electron-hole correlation function.
It is shown that, for impurities with an on-site potential, a crossover
behavior will occur if the impurity strength is comparable to the bandwidth of
the exciton, corresponding to exciton localization. For a charged impurity with
a spatially extended potential, in addition to localization the exciton will
dissociate into an uncorrelated electron-hole pair when the impurity is
sufficiently strong to overcome the Coulomb interaction which binds the
electron-hole pair. Interchain coupling effects are also discussed by
considering two polymer chains coupled through nearest-neighbor interchain
hopping and interchain Coulomb interaction . Within the
matrix scattering formalism, for every center-of-mass momentum, we find two
poles determined only by , which correspond to the interchain
excitons. Finally, the exciton state is used to study the charge transfer from
a polymer chain to an adjacent dopant molecule.Comment: 24 pages, 23 eps figures, pdf file of the paper availabl
- …