56 research outputs found

    Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO2_{2}

    Full text link
    To investigate the pressure-induced structural transitions of chromium dioxide (CrO2_{2}), phonon dispersions and total energy band structures are calculated as a function of pressure. The first structural transition has been confirmed at Pโ‰ˆ\approx 10 GPa from the ground state tetragonal CrO2_{2} (t-CrO2_{2}) of rutile type to orthorhombic CrO2_{2} (o-CrO2_{2}) of CaCl2_{2} type. The half-metallic property is found to be preserved in o-CrO2_{2}. The softening of Raman-active B1g_{1g} phonon mode, which is responsible for this structural transition, is demonstrated. The second structural transition is found to occur for Pโ‰ฅ\geq 61.1 GPa from ferromagnetic (FM) o-CrO2_{2} to nonmagnetic (NM) monoclinic CrO2_{2} (m-CrO2_{2}) of MoO2_{2} type, which is related to the softening mode at {\bf q} = R(1/2,0,1/2). The third structural transition has been newly identified at P= 88.8 GPa from m-CrO2_{2} to cubic CrO2_{2} of CaF2_{2} type that is a FM insulator

    Correlation Assisted Phonon Softenings and the Mott-Peierls Transition in VO2_{2}

    Full text link
    To explore the driving mechanisms of the metal-insulator transition (MIT) and the structural transition in VO2, we have investigated phonon dispersions of rutile VO2 (R-VO2) in the DFT and the DFT+U (U : Coulomb correlation) band calculations. We have found that the phonon softening instabilities occur in both cases, but the softened phonon mode only in the DFT+U describes properly both the MIT and the structural transition from R-VO2 to monoclinic VO2 (M1-VO2). This feature demonstrates that the Coulomb correlation effect plays an essential role of assisting the Peierls transition in R-VO2. We have also found from the phonon dispersion of M1-VO2 that M1 structure becomes unstable under high pressure. We have predicted a new phase of VO2 at high pressure that has a monoclinic CaCl2-type structure with metallic nature
    • โ€ฆ
    corecore