521 research outputs found

    Algorithms for fitting cylindrical objects to sparse range point clouds for rapid workspace modeling

    Get PDF

    Primitives Merging for Rapid 3D Modeling

    Get PDF

    Evaluation of genetic diversity and linkage disequilibrium in Korean-bred rice varieties using SSR markers

    Get PDF
    Background: In order to evaluate the variation among different rice types, the genetic diversity in a rice collection composed by 59 breeding lines, 23 landraces, 18 weedy rice lines, and 35 introduced lines that collected from countries worldwide was analyzed using 134 simple sequence repeat markers. Results: In total, 1264 alleles were identified (average, 9.43 per locus). Rare alleles made up a large portion (58.4%) of the detected alleles, and 29 unique alleles associated with rice accessions were also discovered. A model-based structural analysis revealed the presence of three subpopulations. The genetic relationships revealed by the neighbour-joining tree method were fairly consistent with the structure-based membership assignments for most of the accessions. A total of 105 accessions (79.5%) showed a clear relationship to each cluster, while the remaining 27 accessions (20.5%) were categorized as admixtures. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide association mapping. The mean r2 value for all intrachromosomal loci pairs was 0.1286. The LD between linked markers decreased with the genetic distance between pairs of linked loci. Conclusions: These results will provide an effective aid for future allele mining, association genetics, mapping and cloning gene(s), germplasm conservation, and improvement programs

    Development of cDNA-derived SSR markers and their efficiency in diversity assessment of Cymbidium accessions

    Get PDF
    Abstract Cymbidium spp. are popular flowering plants. Assessment of the genetic diversity in cultivated Cymbidium facilitates conservation of germplasm and subsequent cultivar improvement. Thus, it is important to develop more efficient polymorphic DNA markers. Although more motifs (403) were identified and more primers (206) were designed in the genomic library compared to the cDNA library, a larger number of successful primers were obtained from the cDNA library (59.9%) than from genomic DNA library (51.1%). However, higher PIC and gene diversity were identified in genomic SSRs. The average allele number per locus was also higher in genomic SSRs (7.3) than EST-SSRs (5.2), among the 24 evaluated Cymbidium accessions. AT/TA was comparatively high in EST-SSRs, while this motif was not as common in genomic SSRs. The CTT/AAG/TCT/AGA/TTC/GAA and TGC/GCA/GCT/AGC/CTG/CAG motifs were the most abundant tri-nucleotide sequences in EST-SSRs, while GTT/AAC/TGT/ACA/TTG/CAA was the most frequent in genomic SSRs. The number of repeats ranged from 3 to 12 in EST-SSRs. Currently, 52 novel polymorphic SSR markers have been evaluated, which will be useful for germplasm assessments, core set construction, evaluation of genetic diversity, and marker assisted selection (MAS) based Cymbidium breeding

    Synergizing breeding strategies via combining speed breeding, phenotypic selection, and marker-assisted backcrossing for the introgression of Glu-B1i in wheat

    Get PDF
    Wheat is a major food crop that plays a crucial role in the human diet. Various breeding technologies have been developed and refined to meet the increasing global wheat demand. Several studies have suggested breeding strategies that combine generation acceleration systems and molecular breeding methods to maximize breeding efficiency. However, real-world examples demonstrating the effective utilization of these strategies in breeding programs are lacking. In this study, we designed and demonstrated a synergized breeding strategy (SBS) that combines rapid and efficient breeding techniques, including speed breeding, speed vernalization, phenotypic selection, backcrossing, and marker-assisted selection. These breeding techniques were tailored to the specific characteristics of the breeding materials and objectives. Using the SBS approach, from artificial crossing to the initial observed yield trial under field conditions only took 3.5 years, resulting in a 53% reduction in the time required to develop a BC2 near-isogenic line (NIL) and achieving a higher recurrent genome recovery of 91.5% compared to traditional field conditions. We developed a new wheat NIL derived from cv. Jokyoung, a leading cultivar in Korea. Milyang56 exhibited improved protein content, sodium dodecyl sulfate-sedimentation value, and loaf volume compared to Jokyoung, which were attributed to introgression of the Glu-B1i allele from the donor parent, cv. Garnet. SBS represents a flexible breeding model that can be applied by breeders for developing breeding materials and mapping populations, as well as analyzing the environmental effects of specific genes or loci and for trait stacking
    • 

    corecore