222 research outputs found

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Get PDF
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Properties of oriented strand board made from Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne)

    Get PDF
    Bamboo has gained increasing attention as an alternative raw material for use in the manufacture of composite boards. Three-layer OSBs were made using Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne) strands to evaluate the effects of strand length and pre-treatment techniques on the physical, mechanical, and durability properties. Three different strand lengths, namely 50, 60, and 70 mm, were prepared. Prior to the manufacture into OSB, the strands were immersed in cold water for 24 h and in 6% acetic anhydrides solution for 48 h. The OSBs were fabricated using 5% MDI resin based on the strand dry weight. The results indicated that MOR and MOE values in perpendicular to the grain direction were much influenced by strand length. The dimensional stability of OSB was slightly improved by immersing the strands in acetic anhydride solution. Immersing strands in cold water and acetic anhydride solution improved the resistance of OSB against subterranean termite (Macrotermes gylvus) attack under the adopted experimental condition. All OSB parameters manufactured in this experiment were better than the minimum requirement of CSA 0437.0 (Grade O–2) standard

    The Benefits and Risks of Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma: Prospective Cohort Study

    Get PDF
    Objectives. This study evaluated the benefits of performing prophylactic central neck dissection (CND) with total thyroidectomy (TT) in management of papillary thyroid carcinoma (PTC) patients who were clinically node-negative at presentation. Methods. A total of 257 patients with stage T1 or T2 PTC and without preoperative evidence of lymph node involvement (N0) were enrolled in this prospective study. The patients were randomly assigned to two groups: (1) a total thyroidectomy (TT) group (n=104) or (2) a TT plus CND group (n=153). The two groups were compared for their perioperative data, complication rates, disease recurrence rates, and clinical outcomes. Results. The two groups of patients were similar in age, sex ratio, follow-up duration, and tumor size (P=0.227, 0.359, 0.214, and 0.878, resp.). The two groups showed similar rates of disease recurrence (3.9% in the TT group versus 3.3% in the TT plus CND group); however, complications occurred more frequently in the TT plus CND group; especially transient hypocalcemia (P=0.043). Conclusions. Patients treated with TT plus CND had a higher rate of complications with similar recurrence rate. We believe that CND may not be routinely recommended when treating patients with PTC

    Inhibition of the Interaction Between Hippo/Yap and Akt Signaling With Ursolic Acid and 3’3-Diindolylmethane Suppresses Esophageal Cancer Tumorigenesis

    Get PDF
    Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3\u273-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer

    Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies

    Get PDF
    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.Fil: Kwon, Soon Gu. Argonne National Laboratory; Estados UnidosFil: Chattopadhyay, Soma. Argonne National Laboratory; Estados Unidos. Illinois Institute of Technology; Estados UnidosFil: Koo, Bonil. Argonne National Laboratory; Estados UnidosFil: Dos Santos Claro, Paula Cecilia. Argonne National Laboratory; Estados UnidosFil: Shibata, Tomohiro. Argonne National Laboratory; Estados UnidosFil: Requejo, Felix Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Giovanetti, Lisandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Liu, Yuzi. Argonne National Laboratory; Estados UnidosFil: Johnson, Christopher. Argonne National Laboratory; Estados UnidosFil: Prakapenka, Vitali. University of Chicago; Estados UnidosFil: Lee, Byeongdu. Argonne National Laboratory; Estados UnidosFil: Shevchenko, Elena V.. Argonne National Laboratory; Estados Unido

    Giant thermal hysteresis in Verwey transition of single domain Fe3O4 nanoparticles

    Get PDF
    Most interesting phenomena of condensed matter physics originate from interactions among different degrees of freedom, making it a very intriguing yet challenging question how certain ground states emerge from only a limited number of atoms in assembly. This is especially the case for strongly correlated electron systems with overwhelming complexity. The Verwey transition of Fe3O4 is a classic example of this category, of which the origin is still elusive 80 years after the first report. Here we report, for the first time, that the Verwey transition of Fe3O4 nanoparticles exhibits size-dependent thermal hysteresis in magnetization, 57Fe NMR, and XRD measurements. The hysteresis width passes a maximum of 11 K when the size is 120 nm while dropping to only 1 K for the bulk sample. This behavior is very similar to that of magnetic coercivity and the critical sizes of the hysteresis and the magnetic single domain are identical. We interpret it as a manifestation of charge ordering and spin ordering correlation in a single domain. This work paves a new way of undertaking researches in the vibrant field of strongly correlated electron physics combined with nanoscience.Comment: 13 pages, 4 figure

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Full text link
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Spexin-Based Galanin Receptor Type 2 Agonist for Comorbid Mood Disorders and Abnormal Body Weight

    Get PDF
    Despite the established comorbidity between mood disorders and abnormal eating behaviors, the underlying molecular mechanism and therapeutics remain to be resolved. Here, we show that a spexin-based galanin receptor type 2 agonist (SG2A) simultaneously normalized mood behaviors and body weight in corticosterone pellet-implanted (CORTI) mice, which are underweight and exhibit signs of anhedonia, increased anxiety, and depression. Administration of SG2A into the lateral ventricle produced antidepressive and anxiolytic effects in CORTI mice. Additionally, SG2A led to a recovery of body weight in CORTI mice while it induced significant weight loss in normal mice. In Pavlovian fear-conditioned mice, SG2A decreased contextual and auditory fear memory consolidation but accelerated the extinction of acquired fear memory without altering innate fear and recognition memory. The main action sites of SG2A in the brain may include serotonergic neurons in the dorsal raphe nucleus for mood control, and proopiomelanocortin/corticotropin-releasing hormone neurons in the hypothalamus for appetite and body weight control. Furthermore, intranasal administration of SG2A exerted the same anxiolytic and antidepressant-like effects and decreased food intake and body weight in a dose-dependent manner. Altogether, these results indicate that SG2A holds promise as a clinical treatment for patients with comorbid mood disorders and abnormal appetite/body weight
    corecore