5 research outputs found

    Single-Channel Flow Injection Spectrophotometric Determination of Nickel Using Furildioxime in Micellar Solution

    Get PDF
    A very simple, selective, and fast flow injection spectrophotometeric method is developed for determination of nickel using furildioxime as complexing agent. Micellar solution of brij-35 is employed to solubilize the sparingly soluble complex of Ni-furildioxime in buffered aqueous system (pH-9.00). Under optimized conditions, absorbance is linear from 0.02 to 10 Όg mL−1 using 500 ΌL sample volume and from 10 to 30 Όg mL−1 using 50 ΌL sample volume of nickel at 480 nm, with R2 = 0.9971 and 0.9916, respectively. The molar absorption coefficient and Sandell's sensitivity were 6.0 × 103 L mol−1 cm−1 and 0.01 ng cm−2, respectively. The sample throughput of the method is 120 samples per hour with RSD of 0.01–0.2% for 0.02 to 10 Όg mL−1 nickel (n = 5), indicating that the method is highly precise and reproducible. Interference from cobalt is removed by Nitroso R-salt-modified XAD-16. The developed method is validated by analysing certified reference materials and is applied to assess nickel content of commercially available cigarettes

    ISSN-1996-918X Pak

    Get PDF
    Abstract BSOPD, bis(salicylaldehyde) orthophenylenediamine) is investigated as complexing agent in capillary electrophoresis for determination of gold and chromium. BSOPD was chosen as the UVVisible absorbing chelating ligand because of its ability to form stable complexes with metal ions. Both the metal ions can be determined in single run under optimized conditions with run time of 12 minutes including coexisted ions usually present in waste water. Separation was achieved at optimized conditions of 50 mM phosphate buffer as a background electrolyte at pH =3.4, at applied voltage of -10 kV and detection wavelength of 231 nm. Under above mentioned conditions, limit of quantification (0.5 and 10 ”g mL -1 ) and detection limit (0.1667 and 3.33 ”g mL -1 ) were found for Au(III) and Cr(VI), respectively. Linear calibration graphs were obtained 0.5 -50 ”g mL -1 for Au(III) and 10 -60 ”g mL -1 for Cr(VI) with the correlation coefficient value 0.996 and 0.993, respectively. Utility of this method for metal analysis has been investigated by determining gold from wastewater samples of goldsmith factories and chromium in some environmental waters (portable and polluted).The method was validated by comparing results obtained with capillary zone electrophoresis with atomic absorption spectroscopy

    Utilization of Bis(salicylaldehyde)orthophenylenediamine for the Separation of Gold and Chromium by Capillary Zone Electrophoresis

    No full text
    BSOPD, bis(salicylaldehyde) orthophenylenediamine) is investigated as complexing agent in capillary electrophoresis for determination of gold and chromium. BSOPD was chosen as the UV-Visible absorbing chelating ligand because of its ability to form stable complexes with metal ions. Both the metal ions can be determined in single run under optimized conditions with run time of 12 minutes including coexisted ions usually present in waste water. Separation was achieved at optimized conditions of 50 mM phosphate buffer as a background electrolyte at pH =3.4, at applied voltage of -10 kV and detection wavelength of 231 nm. Under above mentioned conditions, limit of quantification (0.5 and 10 ”g mL-1) and detection limit (0.1667 and 3.33 ”g mL-1) were found for Au(III) and Cr(VI), respectively. Linear calibration graphs were obtained 0.5 – 50 ”g mL-1 for Au(III) and 10 – 60 ”g mL-1 for Cr(VI) with the correlation coefficient value 0.996 and 0.993, respectively. Utility of this method for metal analysis has been investigated by determining gold from wastewater samples of goldsmith factories and chromium in some environmental waters (portable and polluted).The method was validated by comparing results obtained with capillary zone electrophoresis with atomic absorption spectroscopy
    corecore