36 research outputs found
The relationships of the Euparkeriidae and the rise of Archosauria
For the first time, a phylogenetic analysis including all putative euparkeriid taxa is conducted, using a large data matrix analysed with maximum parsimony and Bayesian analysis. Using parsimony, the putative euparkeriid Dorosuchus neoetus from Russia is the sister taxon to Archosauria+Phytosauria. Euparkeria capensis is placed one node further from the crown, and forms a euparkeriid clade with the Chinese taxa Halazhaisuchus qiaoensis and 'Turfanosuchus shageduensis' and the Polish taxon Osmolskina czatkowicensis. Using Bayesian methods, Osmolskina and Halazhaisuchus are sister taxa within Euparkeriidae, in turn sister to 'Turfanosuchus shageduensis' and then Euparkeria capensis. Dorosuchus is placed in a polytomy with Euparkeriidae and Archosauria+Phytosauria. Although conclusions remain tentative owing to low node support and incompleteness, a broad phylogenetic position close to the base of Archosauria is confirmed for all putative euparkeriids, and the ancestor of Archosauria+Phytosauria is optimized as similar to euparkeriids in its morphology. Ecomorphological characters and traits are optimized onto the maximum parsimony strict consensus phylogeny presented using squared change parsimony. This optimization indicates that the ancestral archosaur was probably similar in many respects to euparkeriids, being relatively small, terrestrial, carnivorous and showing relatively cursorial limbmorphology;this Bauplan may have underlain the exceptional radiaton and success of crown Archosauria
Rapid Initial Morphospace Expansion and Delayed Morphological Disparity Peak in the First 100 Million Years of the Archosauromorph Evolutionary Radiation
Adaptive radiations have played a major role in generating modern and deep-time biodiversity. The Triassic radiation of the Archosauromorpha was one of the most spectacular vertebrate radiations, giving rise to many highly ecomorphologically varied lineagesâincluding the dinosaurs, pterosaurs, and stem-crocodyliansâthat dominated the larger-bodied land fauna for the following 150 Ma, and ultimately gave rise to todayâs > 10,000 species of birds and crocodylians. This radiation provides an outstanding testbed for hypotheses relating to adaptive radiations more broadly. Recent studies have started to characterize the tempo and mode of the archosauromorph early adaptive radiation, indicating very high initial rates of evolution, non-competitive niche-filling processes, and previously unrecognized morphological disparity even among non-crown taxa. However, these analyses rested primarily either on discrete characters or on geometric morphometrics of the cranium only, or even failed to fully include phylogenetic information. Here we expand previous 2D geometric morphometric cranial datasets to include new taxa and reconstructions, and create an analogous dataset of the pelvis, thereby allowing comparison of anatomical regions and the transition from âsprawlingâ to âuprightâ posture to be examined. We estimated morphological disparity and evolutionary rates through time. All sampled clades showed a delayed disparity peak for sum of variances and average nearest neighbor distances in both the cranium and pelvis, with disparity likely not saturated by the end of the studied time span (Late Jurassic); this contrasts with smaller radiations, but lends weight to similar results for large, ecomorphologically-varied groups. We find lower variations in pelvic than cranial disparity among Triassic-Jurassic archosaurs, which may be related to greater morphofunctional constraints on the pelvis. Contrasting with some previous work, but also confirming some previous findings during adaptive radiations, we find relatively widespread evidence of correlation between sampled diversity and disparity, especially at the largest phylogenetic scales and using average displacement rather than sum of variances as disparity metric; this also demonstrates the importance of comparing disparity metrics, and the importance of phylogenetic scale. Stem and crown archosauromorphs show a morphological diversification of both the cranium and pelvis with higher initial rates (PermianâMiddle Triassic and at the base of major clades) followed by lower rates once diversification into niches has occurred (Late TriassicâJurassic), indicating an âearly burstâ pattern sensu lato. Our results provide a more detailed and comprehensive picture of the early archosauromorph radiation and have significant bearing on the understanding of deep-time adaptive radiations more broadly, indicating widespread patterns of delayed disparity peaks, initial correlation of diversity and disparity, and evolutionary early bursts.Fil: Foth, Christian. University of Fribourg; Alemania. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Sookias, Roland B.. UniversitĂ© de LiĂšge; BĂ©lgica. University of Oxford; Reino Unido. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin
Rise of Dinosaurs Reveals Major Body-Size Transitions Are Driven by Passive Processes of Trait Evolution
A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252â201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late PermianâMiddle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middleâearly Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted âruleâ that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates
Biology, not environment, drives major patterns in maximum tetrapod body size through time
Abiotic and biological factors have been hypothesized as controlling maximum body size of tetrapods and other animals through geological time. We analyse the effects of three abiotic factorsâoxygen, temperature and land areaâon maximum size of PermianâJurassic archosauromorphs and therapsids, and Cenozoic mammals, using time series generalized least-squares regression models. We also examine maximum size growth curves for the PermianâJurassic data by comparing fits of Gompertz and logistic models. When serial correlation is removed, we find no robust correlations, indicating that these environmental factors did not consistently control tetrapod maximum size. Gompertz modelsâi.e. exponentially decreasing rate of size increase at larger sizesâfit maximum size curves far better than logistic models. This suggests that biological limits such as reduced fecundity and niche space availability become increasingly limiting as larger sizes are reached. Environmental factors analysed may still have imposed an upper limit on tetrapod body size, but any environmentally imposed limit did not vary substantially during the intervals examined despite variation in these environmental factors
Deep cultural ancestry and human development indicators across nation states
How historical connections, events and cultural proximity can influence human development is being increasingly recognized. One aspect of history that has only recently begun to be examined is deep cultural ancestry, i.e. the vertical relationships of descent between cultures, which can be represented by a phylogenetic tree of descent. Here, we test whether deep cultural ancestry predicts the United Nations Human Development Index (HDI) for 44 Eurasian countries, using language ancestry as a proxy for cultural relatedness and controlling for three additional factorsâgeographical proximity, religion and former communism. While cultural ancestry alone predicts HDI and its subcomponents (income, health and education indices), when geographical proximity is included only income and health indices remain significant and the effect is small. When communism and religion variables are included, cultural ancestry is no longer a significant predictor; communism significantly negatively predicts HDI, income and health indices, and Muslim percentage of the population significantly negatively predicts education index, although the latter result may not be robust. These findings indicate that geographical proximity and recent cultural historyâespecially communismâare more important than deep cultural factors in current human development and suggest the efficacy of modern policy initiatives is not tightly constrained by cultural ancestry.</jats:p
Systematics of putative euparkeriids (Diapsida: Archosauriformes) from the Triassic of China
The South African species Euparkeria capensis is of great importance for understanding the early radiation of archosauromorphs (including archosaurs) following the PermoâTriassic mass extinction, as most phylogenetic analyses place it as the sister taxon to crown group Archosauria within the clade Archosauriformes. Although a number of species from LowerâMiddle Triassic deposits worldwide have been referred to the putative clade Euparkeriidae, the monophyly of Euparkeriidae is controversial and has yet to be demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently suggested to be euparkeriids: Halazhaisuchus qiaoensis, âTurfanosuchus shageduensisâ, and Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying Formation of northern China. Here, we reassess the taxonomy and systematics of these taxa. We regard Wangisuchus tzeyii as a nomen dubium, because the holotype is undiagnostic and there is no convincing evidence that the previously referred additional specimens represent the same taxon as the holotype. We also regard âTurfanosuchus shageduensisâ as a nomen dubium as we are unable to identify any diagnostic features. We refer the holotype to Archosauriformes, and more tentatively to Euparkeriidae. Halazhaisuchus qiaoensis and the holotype of âTurfanosuchus shageduensisâ are resolved as sister taxa in a phylogenetic analysis, and are in turn the sister taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae that is the sister to Archosauria+Phytosauria. This is the first quantitative phylogenetic analysis to recover a non-monospecific, monophyletic Euparkeriidae, but euparkeriid monophyly is only weakly supported and will require additional examination. Given their similar sizes, stratigraphic positions and phylogenetic placement, the holotype of âTurfanosuchus shageduensisâ may represent a second individual of Halazhaisuchus qiaoensis, but no apomorphies or unique character combination can be identified to unambiguously unite the two. Our results have important implications for understanding the species richness and palaeobiogeographical distribution of early archosauriforms
New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation
BACKGROUND: The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable âwildcardsâ in morphological phylogenetic analyses, reducing phylogenetic resolution. RESULTS: We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. CONCLUSIONS: Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early archosaurs were distributed over much or all of Pangaea although they may have initially been relatively rare members of faunal assemblages
Exploring the effects of character construction and choice, outgroups, and analytical method on phylogenetic inference from discrete characters in extant crocodilians
Supplementary data for "Exploring the effects of character construction and choice, outgroups, and analytical method on phylogenetic inference from discrete characters in extant crocodilians" submitted to Zoological Journal of the Linnean Societ
Matrix
Phylogenetic matrix as nexus file