25 research outputs found

    Mass transfer of solutes in turbulent wall bounded flows reacting with the conduit surface

    No full text
    This thesis focuses on the decay of chlorine in pipes of drinking water distribution networks due to wall and bulk demand. Accurate prediction of chlorine decay is important, as both chlorine concentrations which are too low and too high pose serious health risks, the former due to pathogen formation and the latter due to the formation of disinfection by-products. Water quality models used for the prediction of chlorine decay make use of parameterisations for the wall demand in the form of Sherwood number Sh correlations, which couple the wall mass flux to a Reynolds number Re, Schmidt number Sc and wall roughness. These correlations are subject to significant uncertainty, particularly for turbulent flows. A combined analytical and numerical approach is taken to study in detail the interaction between flow, turbulence and mass transport, with the aim of improving the understanding and accuracy of wall demand parameterisations for chlorine. Simulations of the chlorine decay in an axisymmetric pipe with hydraulically smooth walls were performed for Re = 104 to 106 and Sc = 1000 using Reynolds averaged conservation equations. These values are typical for chlorine transport in distribution networks. The simulations confirmed that the assumptions made in water quality models for chlorine wall demand are valid. Asymptotic solutions for high Sc solutes were developed which are applicable both to linear and nonlinear wall reactions. Results showed that the Sh correlation is independent of the reaction type. For rough walls, the two main wall demand parameterisations are mutually inconsistent: one is valid for low and the other for high wall demand coefficients only. Numerical simulation of flow and high Sc mass transport over a dtype rough surface at Re = 2.5×105 showed that the inconsistency between the two parameterisations was caused by the geometry. For low wall demand coefficients, the existence of roughness elements causes higher wall demand than for a smooth wall. However, at high wall demand coefficients the maximum wall demand achievable in the cavities was much smaller than for the crests. Hence, the effective surface area and therefore the wall demand became lower than for a smooth wall. A parameterisation was developed which reproduced the solute mass decay over the entire range of wall demand coefficients. Most of the solutions and parameterisations developed in this thesis are on the same level of description as water quality models. The findings of this thesis can be used as supportive evidence for the validity of assumptions made for water quality models, and to inform how processes should be modelled when these assumptions are violated

    Coupled heat-mass transport modelling of radionuclide migration from a nuclear waste disposal borehole

    Get PDF
    Disposal of radioactive waste originating from reprocessing of spent research reactor fuel typically includes stainless steel canisters with waste immobilised in a glass matrix. In a deep borehole disposal concept, waste packages could be stacked in a disposal zone at a depth of one to potentially several kilometres. This waste will generate heat for several hundreds of years. The influence of combining a natural geothermal gradient with heat from decaying nuclear waste on radionuclide transport from deep disposal boreholes is studied by implementing a coupled heat-solute mass transport modelling framework, subjected to depth-dependent temperature, pressure, and viscosity profiles. Several scenarios of waste-driven heat loads were investigated to test to what degree, if any, the additional heat affects radionuclide migration by generating convection-driven transport. Results show that the heat output and the calculated radioactivity at a hypothetical near-surface observation point are directly correlated; however, the overall impact of convection-driven transport is small due to the short duration (a few hundred years) of the heat load. Results further showed that the calculated radiation dose at the observation point was very sensitive to the magnitude of the effective diffusion parameter of the host rock. Coupled heat-solute mass transport models are necessary tools to identify influential processes regarding deep borehole disposal of heat-generating long-lived radioactive waste

    Comparison and verification of turbulence Reynolds-averaged Navier-Stokes closures to model spatially varied flows

    Get PDF
    The robustness and accuracy of Reynolds-averaged Navier–Stokes (RANS) models was investigated for complex turbulent flow in an open channel receiving lateral inflow, also known as spatially varied flow with increasing discharge (SVF). The three RANS turbulence models tested include realizable k–ε, shear stress transport k–ω and Reynolds stress model based on their prominence to model jets in crossflows. Results were compared to experimental laser Doppler velocimetry measurements from a previous study. RANS results in the uniform flow region and farther from the jet centreline were more accurate than within the lateral inflow region. On the leeward side of the jet, RANS models failed to capture the downward velocity vectors resulting in major deviations in vertical velocity. Among RANS models minor variations were noted at impingement and near the water surface. Regardless of inadequately predicting complex characteristics of SVF, RANS models matched experimental water surface profiles and proved more superior to the theoretical approach currently used for design purposes

    Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations

    Get PDF
    © 2020, The Author(s). Turbidity currents are frequently observed in natural and man-made environments, with the potential of adversely impacting the performance and functionality of hydraulic structures through sedimentation and reduction in storage capacity and an increased erosion. Construction of obstacles upstream of hydraulic structures is a common method of tackling adverse effects of turbidity currents. This paper numerically investigates the impacts of obstacle’s height and geometrical shape on the settling of sediments and hydrodynamics of turbidity currents in a narrow channel. A robust numerical model based on LES method was developed and successfully validated against physical modelling measurements. This study modelled the effects of discretization of particles size distribution on sediment deposition and propagation in the channel. Two obstacles geometry including rectangle and triangle were studied with varying heights of 0.06, 0.10 and 0.15 m. The results show that increasing the obstacle height will reduce the magnitude of dense current velocity and sediment transport in narrow channels. It was also observed that the rectangular obstacles have more pronounced effects on obstructing the flow of turbidity current, leading to an increase in the sediment deposition and mitigating the impacts of turbidity currents

    Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations

    Get PDF
    Turbidity currents are frequently observed in natural and man-made environments, with the potential of adversely impacting the performance and functionality of hydraulic structures through sedimentation and reduction in storage capacity and an increased erosion. Construction of obstacles upstream of hydraulic structures is a common method of tackling adverse effects of turbidity currents. This paper numerically investigates the impacts of obstacle’s height and geometrical shape on the settling of sediments and hydrodynamics of turbidity currents in a narrow channel. A robust numerical model based on LES method was developed and successfully validated against physical modelling measurements. This study modelled the effects of discretization of particles size distribution on sediment deposition and propagation in the channel. Two obstacles geometry including rectangle and triangle were studied with varying heights of 0.06, 0.10 and 0.15 m. The results show that increasing the obstacle height will reduce the magnitude of dense current velocity and sediment transport in narrow channels. It was also observed that the rectangular obstacles have more pronounced effects on obstructing the flow of turbidity current, leading to an increase in the sediment deposition and mitigating the impacts of turbidity currents

    Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site

    Get PDF
    Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) may be a valid long-term management option at petroleum impacted sites. However, its future long-term reliability needs to be established. NSZD includes partitioning, biotic and abiotic degradation of LNAPL components plus multiphase fluid dynamics in the subsurface. Over time, LNAPL components are depleted and those partitioning to various phases change, as do those available for biodegradation. To accommodate these processes and predict trends and NSZD over decades to centuries, for the first time, we incorporated a multi-phase multi-component multi-microbe non-isothermal approach to representatively simulate NSZD at field scale. To validate the approach we successfully mimic data from the LNAPL release at the Bemidji site. We simulate the entire depth of saturated and unsaturated zones over the 27 years of post-release measurements. The study progresses the idea of creating a generic digital twin of NSZD processes and future trends. Outcomes show the feasibility and affordability of such detailed computational approaches to improve decision-making for site management and restoration strategies. The study provided a basis to progress a computational digital twin for complex subsurface systems

    Towards characterizing LNAPL remediation endpoints

    Get PDF
    Remediating sites contaminated with light non-aqueous phase liquids (LNAPLs) is a demanding and often prolonged task. It is vital to determine when it is appropriate to cease engineered remedial efforts based on the long-term effectiveness of remediation technology options. For the first time, the long term effectiveness of a range of LNAPL remediation approaches including skimming and vacuum-enhanced skimming each with and without water table drawdown was simulated through a multi-phase and multi-component approach. LNAPL components of gasoline were simulated to show how component changes affect the LNAPL\u27s multi-phase behaviour and to inform the risk profile of the LNAPL. The four remediation approaches along with five types of soils, two states of the LNAPL specific mass and finite and infinite LNAPL plumes resulted in 80 simulation scenarios. Effective conservative mass removal endpoints for all the simulations were determined. As a key driver of risk, the persistence and mass removal of benzene was investigated across the scenarios. The time to effectively achieve a technology endpoint varied from 2 to 6 years. The recovered LNAPL in the liquid phase varied from 5% to 53% of the initial mass. The recovered LNAPL mass as extracted vapour was also quantified. Additional mass loss through induced biodegradation was not determined. Across numerous field conditions and release incidents, graphical outcomes provide conservative (i.e. more prolonged or greater mass recovery potential) LNAPL remediation endpoints for use in discussing the halting or continuance of engineered remedial efforts

    Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials

    Get PDF
    Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78 days; in total extracting over 5 m3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3 mL/s) across all remediation techniques each operating over periods of 4–14 days over the 78 day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks

    On quantifying global carbon emission from oil contaminated lands over centuries

    Get PDF
    Petroleum releases into the subsurface contribute to global soil carbon emissions. Quantifying releases and changes in releases of carbon from soils over the lifetime of a spill is complex. Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) embodies all key mechanisms for transformation to carbon gases and their release from soils including partitioning, transport and degradation of petroleum components. Quantification of the interconnected behaviours of the soil microbiome, fluid flow, multi-component transport, partitioning, and biodegradation is crucial for understanding NSZD. Volatilization from LNAPL, aerobic biodegradation, methanogenesis, and heat production all lead to release of greenhouse gases to the atmosphere. To estimate carbon emissions, using a validated computational platform, we modelled the long term NSZD of four petroleum hydrocarbon types; crude oil, diesel, jet fuel and gasoline, to span the major products used globally. For two soil types, we estimated 150 years of carbon emissions from annual minor and 25 mostly major petroleum hydrocarbon land release incidents since 1950 – with an estimated released mass of ~9 million tonnes across the circumstances considered. Up to 2100 the mass of carbon emitted to the atmosphere is estimated to range from 4 to 6 Teragrams, with nearly 60 % currently released. Nomographs generated help predict the fate of LNAPL plumes and carbon emissions due to NSZD, which is crucially important to management of soil and groundwater contamination. The method provides a basis to include additionally identified and future petroleum releases. It is noted that the petroleum mixture composition, degradation rates, volatilization, and subsurface characteristics all can influence carbon emission estimations

    Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics

    Get PDF
    © 2020 The Authors We conducted multiple laboratory trials in a robust and repeatable experimental layout to study dense non-aqueous phase liquid (DNAPL) source zone formation. We extended an image processing and analysis framework to derive DNAPL saturation distributions from reflective optical imaging data, with volume balance deviations \u3c 5.07%. We used a multiphase flow model to simulate source zone formation in a Monte Carlo approach, where the parameter space was defined by the variation of retention curve parameters. Integral and geometric measures were used to characterize the source zones and implemented into a multi-criteria objective function. The latter showed good agreement between observation data and simulation results for effective DNAPL saturation values \u3e 0.04, especially for early stages of DNAPL migration. The common hypothesis that parameters defining the DNAPL-water retention curves are constant over time was not confirmed. Once DNAPL pooling started, the optimal fit in the parameter space was significantly different compared to the earlier DNAPL migration stages. We suspect more complex processes (e.g., capillary hysteresis, adsorption) to become relevant during pool formation. Our results reveal deficits in the grayscale-DNAPL saturation relationship definition and laboratory estimation of DNAPL-water retention curve parameters to overcome current limitations to describe DNAPL source zone formation
    corecore