64 research outputs found
Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population similar to 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history, of population bottlenecks and suggest that die), began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian Populations
Complete mitochondrial DNA sequences provide new insights into the Polynesian motif and the peopling of Madagascar
More than a decade of mitochondrial DNA (mtDNA) studies have given the 'Polynesian motif' renowned status as a marker for tracing the late-Holocene expansion of Austronesian speaking populations. Despite considerable research on the Polynesian motif in Oceania, there has been little equivalent work on the western edge of its expansion - leaving major issues unresolved regarding the motif's evolutionary history. This has also led to considerable uncertainty regarding the settlement of Madagascar. In this study, we assess mtDNA variation in 266 individuals from three Malagasy ethnic groups: the Mikea, Vezo, and Merina. Complete mtDNA genome sequencing reveals a new variant of the Polynesian motif in Madagascar; two coding region mutations define a Malagasy-specific sub-branch. This newly defined 'Malagasy motif' occurs at high frequency in all three ethnic groups (13-50%), and its phylogenetic position, geographic distribution, and estimated age all support a recent origin, but without conclusively identifying a specific source region. Nevertheless, the haplotype's limited diversity, similar to those of other mtDNA haplogroups found in our Malagasy groups, best supports a small number of initial settlers arriving to Madagascar through the same migratory process. Finally, the discovery of this lineage provides a set of new polymorphic positions to help localize the Austronesian ancestors of the Malagasy, as well as uncover the origin and evolution of the Polynesian motif itself
The Genographic Project Public Participation Mitochondrial DNA Database
The Genographic Project is studying the genetic signatures of ancient human migrations and creating an open-source research database. It allows members of the public to participate in a real-time anthropological genetics study by submitting personal samples for analysis and donating the genetic results to the database. We report our experience from the first 18 months of public participation in the Genographic Project, during which we have created the largest standardized human mitochondrial DNA (mtDNA) database ever collected, comprising 78,590 genotypes. Here, we detail our genotyping and quality assurance protocols including direct sequencing of the mtDNA HVS-I, genotyping of 22 coding-region SNPs, and a series of computational quality checks based on phylogenetic principles. This database is very informative with respect to mtDNA phylogeny and mutational dynamics, and its size allows us to develop a nearest neighbor–based methodology for mtDNA haplogroup prediction based on HVS-I motifs that is superior to classic rule-based approaches. We make available to the scientific community and general public two new resources: a periodically updated database comprising all data donated by participants, and the nearest neighbor haplogroup prediction tool
Legal and regulatory responses
Covid-19 pandemic posed a unique
challenge to legislatures and executives
worldwide, necessitating the development
of new regulations. This chapter evaluates
South Africa’s legal and regulatory response
to Covid-19 against the values enshrined in
section 1 of the Constitution. It considers the
options for managing the pandemic provided
by the Constitution and ordinary legislation
and evaluates the impact of the choice of the
Disaster Management Act.
Covid-19 has had a profound impact on and
challenged the maintenance of human
rights. The chapter reviews issues around human rights and governance within the legal
framework, as well as the ethical guidelines
that should frame responses to a pandemic. It
examines how consideration of the country’s
constitutional and democratic norms, values,
and safeguards (e.g., the rule of law, freedom
of expression, and human dignity) were
affected with respect to the right to healthcare,
education, a safe environment, and the like
during the management of the pandemic.
Rather than analysing specific regulations in
detail, the chapter focuses on three macro
issues: the rule of law, human rights, and
freedom of expression. The aim is to provide
a broad framework and set out principles
with which the law must comply during
emergency situations.This chapter 3.1 is published in the first edition of South Africa Covid-19 country report in June 2021.https://www.gov.za/sites/default/files/gcis_document/202206/sa-covid-19-reporta.pd
Recommended from our members
Multiple ethnic origins of mitochondrial DNA lineages for the population of Mauritius
This article reports on the first genetic assessment of the contemporary Mauritian population. Small island nodes such as
Mauritius played a critical role in historic globalization processes and revealing high-resolution details of labour sourcing is
crucial in order to better understand early-modern diaspora events. Mauritius is a particularly interesting case given detailed
historic accounts attesting to European (Dutch, French and British), African and Asian points of origin. Ninety-seven samples
were analysed for mitochondrial DNA to begin unravelling the complex dynamics of the island’s modern population. In
corroboration with general demographic information, the majority of maternal lineages were derived from South Asia
(58.76%), with Malagasy (16.60%), East/Southeast Asian (11.34%) and Sub-Saharan African (10.21%) also making significant
contributions. This study pinpoints specific regional origins for the South Asian genetic contribution, showing a greater
influence on the contemporary population from northern and southeast India. Moreover, the analysis of lineages related to
the slave trade demonstrated that Madagascar and East Asia were the main centres of origin, with less influence from West
Africa
Geographic population structure analysis of worldwide human populations infers their biogeographical origins
The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing
The GenoChip: A New Tool for Genetic Anthropology
The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical,
and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first
phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the
current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic
variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were
designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic
studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution
research into outstanding questions in genetic anthropology. TheGenoChip includes ancestry informativemarkers obtained
for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was
designed to identify all knownY-chromosome andmtDNAhaplogroups. The chip was carefully vetted to avoid inclusion ofmedically
relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial
arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions
had the highestmean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal
component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic
anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs
and over 130,000 autosomal and X-chromosomal SNPswithout any known health,medical, or phenotypic relevance, the GenoChip
is a useful tool for genetic anthropology and population genetics
Melanesian mtDNA Complexity
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at ∼30–50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval ∼3,500–8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved
- …