2,569 research outputs found

    RESIDUAL STRENGTH OF STRUCTURAL STEELS: SN400, SM520 AND SM570

    Get PDF
    This paper presents post-fire mechanical properties of mild to high-strength steels commonly used in building structures in Korea. Steel is one of the main materials for building construction due to fast construction, light weight, and high seismic resistance. However, steel usually loses its strength and stiffness at elevated temperatures, especially over 600°C. But steel can regain some of its original mechanical properties after cooling down from the fire. Therefore, it is important to accurately evaluate the reliable performance of steel to reuse or repair the structures. For this reason, an experimental study was performed to examine the post-fire mechanical properties of steel plates SN400, SM520 and SM570 after cooling down from elevated temperatures up to 900°C. The post-fire stress-strain curves, elastic modulus, yield and ultimate strengths and residual factors were obtained and discussed

    A Compact Optical Six-Axis Force/Torque Sensor for Legged Robots Using a Polymorphic Calibration Method

    Full text link
    This paper presents a novel design for a compact, lightweight 6-axis force/torque sensor intended for use in legged robots. The design promotes easy manufacturing and cost reduction, while introducing innovative calibration methods that simplify the calibration process and minimize effort. The sensor's advantages are achieved by streamlining the structure for durability, implementing noncontact sensors, and providing a wider sensing range compared to commercial sensors. To maintain a simple structure, the paper proposes a force sensing scheme using photocouplers where the sensing elements are aligned in-plane. This strategy enables all sensing elements to be fabricated on a single printed circuit board, eliminating manual labor tasks such as bonding and coating the sensing elements. The prototype sensor contains only four parts, costs less than $250, and exhibits high response frequency and performance. Traditional calibration methods present challenges, such as the need for specialized equipment and extensive labor. To facilitate easy calibration without the need for specialized equipment, a new method using optimal control is proposed. To verify the feasibility of these ideas, a prototype six-axis F/T sensor was manufactured. Its performance was evaluated and compared to a reference F/T sensor and previous calibration methods.Comment: 12 pages, 13 figures, 9 table

    Carnosol induces apoptotic cell death through ROS-dependent inactivation of STAT3 in human melanoma G361 cells

    Get PDF
    Melanoma is the leading cause of skin cancer deaths, and the poor prognosis of metastatic melanoma has made needs for a novel pharmacological treatment or efficient intervention. Carnosol, a major polyphenolic compound from Rosmarinus officinalis, has a wide range of biological activities including anti-cancer effect. However, the underlying molecular mechanisms of its anti-cancer effect remain poorly understood in malignant human melanoma cells. In the present study, we investigate the apoptotic effect and the underlying anti-cancer mechanisms of carnosol. Our results revealed that carnosol strongly induced apoptosis against human melanoma G361 cells in a dose- and time-dependent manner, and caused dramatical elevation in cellular reactive oxygen species (ROS) level during apoptosis. In mechanistic studies, carnosol treatment decreased protein level of anti-apoptotic B‑cell lymphoma 2 (Bcl-2) and B cell lymphoma-extra large (Bcl-xL), however, increased level of pro-apoptotic Bcl-2-associated X protein (Bax) protein. Moreover, carnosol escalated cellular level of p53, which was accompanied by a decline of mouse double minute 2 homolog (MDM2) level. Also, carnosol inhibited activation of Src and signal transducer and activator of transcription 3 (STAT3), therefore down-regulated STAT3-dependent gene expression, such as D-series cyclin and survivin. These changes by carnosol were attenuated by pre-treatment of N-acetyl cysteine, and abolished progression of carnosol-induced apoptosis. In conclusion, carnosol induced apoptosis in human melanoma G361 cells through ROS generation and inhibition of STAT3-mediated pathway. Our results provide molecular bases of carnosol-induced apoptosis, and suggest a novel candidate for human melanoma treatment.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1A02050495, J.-S. Choi) and by the Ministry of Science, ICT and Future Planning 2017R1A2B4009831, K.- S. Chun)

    Matter-matter entanglement for quantum networks

    Get PDF
    Developments in quantum information science rely critically on entanglement, as its distribution between different parties enables quantum communication protocols, such as quantum key distribution or teleportation. This talk focused on two different ways to generate heralded entanglement between matter systems, a critical requirement for scalable quantum networking

    The diameter of the world wide web

    Full text link
    Despite its increasing role in communication, the world wide web remains the least controlled medium: any individual or institution can create websites with unrestricted number of documents and links. While great efforts are made to map and characterize the Internet's infrastructure, little is known about the topology of the web. Here we take a first step to fill this gap: we use local connectivity measurements to construct a topological model of the world wide web, allowing us to explore and characterize its large scale properties.Comment: 5 pages, 1 figure, updated with most recent results on the size of the ww
    corecore