4,227 research outputs found

    Counterterms in Gravity in the Light-Front Formulation and a D=2 Conformal-like Symmetry in Gravity

    Full text link
    In this paper we discuss gravity in the light-front formulation (light-cone gauge) and show how possible counterterms arise. We find that Poincare invariance is not enough to find the three-point counterterms uniquely. Higher-spin fields can intrude and mimic three-point higher derivative gravity terms. To select the correct term we have to use the remaining reparametrization invariance that exists after the gauge choice. We finally sketch how the corresponding programme for N=8 Supergravity should work.Comment: 26 pages, references added, published versio

    Critical currents for vortex defect motion in superconducting arrays

    Full text link
    We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.Comment: To appear in Physical Review

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Non-Gaussianity in Axion N-flation Models

    Get PDF
    We study perturbations in the multifield axion N-flation model, taking account of the full cosine potential. We find significant differences from previous analyses which made a quadratic approximation to the potential. The tensor-to-scalar ratio and the scalar spectral index move to lower values, which nevertheless provide an acceptable fit to observation. Most significantly, we find that the bispectrum non-Gaussianity parameter fNL may be large, typically of order 10 for moderate values of the axion decay constant, increasing to of order 100 for decay constants slightly smaller than the Planck scale. Such a non-Gaussian fraction is detectable. We argue that this property is generic in multifield models of hilltop inflation

    Resonance Patterns in a Stadium-shaped Microcavity

    Full text link
    We investigate resonance patterns in a stadium-shaped microcavity around nckR≃10n_ck R \simeq 10, where ncn_c is the refractive index, kk the vacuum wavenumber, and RR the radius of the circular part of the cavity. We find that the patterns of high QQ resonances can be classified, even though the classical dynamics of the stadium system is chaotic. The patterns of the high QQ resonances are consistent with the ray dynamical consideration, and appears as the stationary lasing modes with low pumping rate in the nonlinear dynamical model. All resonance patterns are presented in a finite range of kRkR.Comment: 8 pages, 9 figure

    Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders

    Full text link
    We study motion of domain wall defects in a fully frustrated Josephson-unction ladder system, driven by small applied currents. For small system sizes, the energy barrier E_B to the defect motion is computed analytically via symmetry and topological considerations. More generally, we perform numerical simulations directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.

    A Recruitment and Human Resource Management Technique Using Blockchain Technology for Industry 4.0

    Full text link
    Application of Information Technology (IT) in the domain of Human Resource Management (HRM) systems is a sine qua non for any organization for successfully adopting and implementing Fourth Industrial Revolution (Industry 4.0). However, these systems are required to ensure non-biased, efficient, transparent and secure environment. Blockchain, a technology based on distributed digital ledgers, can help facilitate the process of successfully effectuating these specifications. A detailed literature review has been conducted to identify the current status of usage of Information Technology in the domain of Human Resource Management and how Blockchain can help achieve a smart, cost-effective, efficient, transparent and secure factory management system. A Blockchain based Recruitment Management System (BcRMS) as well as Blockchain based Human Resource Management System (BcHRMS) algorithm have been proposed. From the analysis of the results obtained through the case study, it is evident that the proposed system holds definite advantages compared to the existing recruitment systems. Future research directions have also been identified and advocated.Comment: Onik, M. M. H., Miraz, M. H., & Kim, C. S. (2018, April). A recruitment and human resource management technique using Blockchain technology for Industry 4.0. In Proceedings of the Smart Cities Symposium (SCS-2018), Manama, Bahrain (pp. 11-16). IE
    • …
    corecore