5 research outputs found

    Effects of Heat-Killed Lactobacillus plantarum L-137 Supplementation on Growth Performance, Blood Profiles, Intestinal Morphology, and Immune Gene Expression in Pigs

    No full text
    In the present study, the effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the productive performance, intestinal morphology, and cytokine gene expression of suckling-to-fattening pigs were investigated. A total of 100 suckling pigs [(Large White × Landrace) × Duroc; 4.5 ± 0.54 kg initial body weight (BW)] were used and assigned to each of the four dietary treatments as follows: (1) a control diet with antibiotics as a growth promoter (AGP) from the suckling phase to the grower phase and no supplement in the finisher phases; (2) a control diet without antibiotics as a growth promoter (NAGP); (3) a control diet with HK L-137 at 20 mg/kg from the suckling phase to the starter phase and no supplement from the grower phase to the finisher phases (HKL1); and (4) a control diet with HK L-137 at 20 mg/kg from the suckling phase to the weaner phase, at 4 mg/kg from the starter phase to the finisher 1 phase, and no supplement in the finisher 2 phase (HKL2). During the weaner–starter period, the pigs fed on the AGP and HKL2 diets showed significantly higher weight gain and average daily gain (ADG) than those in the NAGP group (p < 0.05). The pigs in the AGP, HKL1, and HKL2 groups showed greater ADG than those in the NAGP groups (p < 0.05) throughout the grower–finisher period. The suckling pigs in the HKL1 and HKL2 groups showed a higher platelet count (484,500 and 575,750) than in the others (p < 0.05); however, there were no significant differences in the other hematological parameters among the treatment groups. The relative mRNA expression level of IFN- ß of the suckling and starter pigs were significantly higher in the HKL1 and HKL2 groups than in the others (p < 0.05), while the IFN-γ showed the highest level in the HKL2 suckling pigs (p < 0.05). These results demonstrate that a HK L-137 supplementation could stimulate the immune response in suckling and starter pigs and promote the growth performance in finishing pigs

    Effects of Heat-Killed <i>Lactobacillus plantarum</i> L-137 Supplementation on Growth Performance, Blood Profiles, Intestinal Morphology, and Immune Gene Expression in Pigs

    No full text
    In the present study, the effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the productive performance, intestinal morphology, and cytokine gene expression of suckling-to-fattening pigs were investigated. A total of 100 suckling pigs [(Large White × Landrace) × Duroc; 4.5 ± 0.54 kg initial body weight (BW)] were used and assigned to each of the four dietary treatments as follows: (1) a control diet with antibiotics as a growth promoter (AGP) from the suckling phase to the grower phase and no supplement in the finisher phases; (2) a control diet without antibiotics as a growth promoter (NAGP); (3) a control diet with HK L-137 at 20 mg/kg from the suckling phase to the starter phase and no supplement from the grower phase to the finisher phases (HKL1); and (4) a control diet with HK L-137 at 20 mg/kg from the suckling phase to the weaner phase, at 4 mg/kg from the starter phase to the finisher 1 phase, and no supplement in the finisher 2 phase (HKL2). During the weaner–starter period, the pigs fed on the AGP and HKL2 diets showed significantly higher weight gain and average daily gain (ADG) than those in the NAGP group (p p p IFN- ß of the suckling and starter pigs were significantly higher in the HKL1 and HKL2 groups than in the others (p IFN-γ showed the highest level in the HKL2 suckling pigs (p < 0.05). These results demonstrate that a HK L-137 supplementation could stimulate the immune response in suckling and starter pigs and promote the growth performance in finishing pigs

    Effect of Bacillus toyonensis BCT-7112T supplementation on growth performance, intestinal morphology, immune-related gene expression, and gut microbiome in Barbary ducks

    No full text
    ABSTRACT: This study aimed to investigate the effect of Bacillus toyonensis BCT-7112T supplementation on growth performance, intestinal morphology, immune-related gene expression, and the cecal microbiota of meat ducks. A total of 150 one-day-old male Barbary ducks were divided into 3 groups with 5 replicates (n = 10 ducks per replicate) by completely randomized design and offered diets supplemented with the commercial product Toyocerin (containing 1 × 109 B. toyonensis BCT-7112T viable spores/g product) at the levels of 0, 500, or 1,000 mg/kg (0, 500, or 1,000 ppm), respectively, for 8 wk. The results showed that although ducks in the 500 ppm B. toyonensis BCT-7112T group displayed numerically better values (e.g., weight gain and feed conversion ratio) than those in the control group, the growth performance of ducks fed diets supplemented with B. toyonensis BCT-7112T did not differ significantly from that of the control group (P > 0.05). There were no significant differences in the intestinal mucosal morphology of ducks across the experimental groups (P > 0.05). However, ducks in the 500 ppm B. toyonensis BCT-7112T group showed a trend of greater values, for example, villus height per crypt depth of duodenum (P = 0.16) and ileum (P = 0.12) compared with those in the control group. The relative expression of immune-related genes, for example, interferon (IFN) and interleukin-6 (IL-6) in the meat duck spleen was significantly lower in both B. toyonensis BCT-7112T groups at 14 d and 35 d than in the control group (P < 0.05). Beta diversity analysis of the cecal microbiota of ducks in either the 500 ppm or the 1,000 ppm B. toyonensis BCT-7112T group showed to have higher diversity than that in the control group, where at the phylum level, Bacteroidetes was the most abundant, followed by Firmicutes, and at the genus level, Bacteroides, Fusobacterium, and Ruminococcaceae were the top 3 most abundant genera. In conclusion, our study demonstrates that 500 ppm supplementation with B. toyonensis BCT-7112T in duck diets can reduce proinflammatory cytokine gene expression, improve immunological function, and increase the variety of microbial communities in the ceca of meat-type ducks
    corecore