6 research outputs found

    Bubble size prediction in gas–solid fluidized beds using genetic programming

    Get PDF
    The hydrodynamics of a gas–solid fluidized bed (FB) is affected by the bubble diameter, which in turn strongly influences the performance of a fluidized bed reactor (FBR). Thus, determining the bubble diameter accurately is of crucial importance in the design and operation of an FBR. Various equations are available for calculating the bubble diameter in an FBR. It has been found in this study that these models show a large variation while predicting the experimentally measured bubble diameters. Accordingly, the present study proposes a new equation for computing the bubble diameter in a fluidized bed. This equation has been developed using an efficient, yet infrequently employed computational intelligence (CI)-based datadriven modelling method termed genetic programming (GP). The prediction and generalization performance of the GP-based equation has been compared with that of a number of currently available equations for computing the bubble diameter in a fluidized bed and the results obtained show a good performance by the newly developed equation

    The influence of acoustic field and frequency on Hydrodynamics of Group B particles

    No full text
    Sound Assisted Fluidized Bed (SAFB) of group B particles (180μm glass bead) has been studied in a 46mm I.D. column with aspect ratios of 1.4 and 2.9. A loudspeaker mounted on the top of the bed was supplied by a function generator with square wave to generate the sound as the source of vibration of the fluidized bed. The sound pressure level (referred to 20μpa) was varied from 102 to 140dB and frequencies from 70Hz to 170Hz were applied. The effects of sound pressure level, sound frequency and particle loading on the properties of SAFB were investigated. The experimental result showed that the minimum fluidization velocity decreased with the increase in sound pressure level, also minimum fluidization velocity was varied with variation of frequencies. At resonance frequency minimum fluidization velocity was found to be minimum. The bed height did not show an appreciable increase in presence of high acoustic field and at resonant frequency. Minimum fluidization velocity verses frequency curve in presence of sound intensity varied with variation of bed weight
    corecore