77 research outputs found
Observation of Electron Clouds in the ANKA Undulator by Means of the Microwave Transmission Method
A superconducting undulator is installed in the ANKA electron storage ring. Electron clouds could potentially contribute to the heat load of this device. A microwave transmission type electron cloud diagnostic has been installed for the undulator section of the ANKA machine. We present the system layout with particular emphasis on the electron machine aspects. Hardware transfer function results and e-cloud data for different machine settings are discussed. Special care has been taken for front end filter design both on the microwave injection and pick-up side
Measurement of Electron Trapping in the CESR Storage Ring
The buildup of low-energy electrons has been shown to affect the performance
of a wide variety of particle accelerators. Of particular concern is the
persistence of the cloud between beam bunch passages, which can impose
limitations on the stability of operation at high beam current. We have
obtained measurements of long-lived electron clouds trapped in the field of a
quadrupole magnet in a positron storage ring, with lifetimes much longer than
the revolution period. Based on modeling, we estimate that about 7% of the
electrons in the cloud generated by a 20-bunch train of 5.3 GeV positrons with
16-ns spacing and population survive longer than 2.3 s in a
quadrupole field of gradient 7.4 T/m. We have observed a non-monotonic
dependence of the trapping effect on the bunch spacing. The effect of a witness
bunch on the measured signal provides direct evidence for the existence of
trapped electrons. The witness bunch is also observed to clear the cloud,
demonstrating its effectiveness as a mitigation technique.Comment: 6 pages, 9 figures, 28 citation
Recommended from our members
HINS R&D Collaboration on Electron Cloud Effects: Midyea rReport
We present a report on ongoing activities on electron-cloud R&D for the MI upgrade. These results update and extend those presented in Refs. 1, 2. In this report we have significantly expanded the parameter range explored in bunch intensity Nb, RMS bunch length {sigma}{sub z} and peak secondary emission yield (SEY) {delta}{sub max}, but we have constrained our simulations to a field-free region. We describe the threshold behaviors in all of the above three parameters. For {delta}{sub max} {ge} 1.5 we find that, even for N{sub b} = 1 x 10{sup 11}, the electron cloud density, when averaged over the entire chamber, exceeds the beam neutralization level, but remains significantly below the local neutralization level (ie., when the electron density is computed in the neighborhood of the beam). This 'excess' of electrons is accounted for by narrow regions of high concentration of electrons very close to the chamber surface, especially at the top and bottom of the chamber, akin to virtual cathodes. These virtual cathodes are kept in equilibrium, on average, by a competition between space-charge forces (including their images) and secondary emission, a mechanism that shares some features with the space-charge saturation of the current in a diode at high fields. For N{sub b} = 3 x 10{sup 11} the electron cloud build-up growth rate and saturation density have a strong dependence on {sigma}{sub z} as {sigma}{sub z} decreases below {approx} 0.4 m, when the average electron-wall impact energy roughly reaches the energy E{sub max} where {delta} peaks. We also present improved results on emittance growth simulations of the beam obtained with the code WARP/POSINST in quasi-static mode, in which the beam-(electron cloud) interaction is lumped into N{sub s} 'stations' around the ring, where N{sub s} = 1, 2,..., 9. The emittance shows a rapid growth of {approx} 20% during the first {approx} 100 turns, followed by a much slower growth rate of {approx} 0.03%/turn. Concerning the electron cloud detection technique using microwave transmission, we present an improved dispersion relation for the TE mode of the microwaves, and a corresponding analytic estimate of the phase shift
Recommended from our members
Doubling the PEP-II Luminosity in Simulation
Simulations show that luminosity of the PEP-II B-factory can be doubled from its present peak value of 1 x 10{sup 34}cm{sup -2}s{sup -1}. The particle simulation code BBI developed for studying beam-beam interaction was used to perform the simulations. It was first found that the parasitic collisions significantly degrade the simulated luminosity as the beam currents are increased from 3A and 1.7A to 4A and 2.2A in the low and high energy rings, respectively. The effect of changes in various accelerator parameters on luminosity was then studied in detail from a rough starting point based on analytic estimates and in the process we systematically optimized the luminosity and showed that a luminosity of over 2 x 10{sup 34}cm{sup -2}s{sup -1} is achievable within feasible limits
Observations and predictions at CesrTA, and outlook for ILC
In this paper, we will describe some of the recent experimental measurements
[1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe
the interaction of the electron cloud with the stored beam. These experiments
have been done over a wide range of beam energies, emittances, bunch currents,
and fill patterns, to gather sufficient information to be able to fully
characterize the beam-electron-cloud interaction and validate the simulation
programs. The range of beam conditions is chosen to be as close as possible to
those of the ILC damping ring, so that the validated simulation programs can be
used to predict the performance of these rings with regard to electroncloud-
related phenomena. Using the new simulation code Synrad3D to simulate the
synchrotron radiation environment, a vacuum chamber design has been developed
for the ILC damping ring which achieves the required level of photoelectron
suppression. To determine the expected electron cloud density in the ring, EC
buildup simulations have been done based on the simulated radiation environment
and on the expected performance of the ILC damping ring chamber mitigation
prescriptions. The expected density has been compared with analytical estimates
of the instability threshold, to verify that the ILC damping ring vacuum
chamber design is adequate to suppress the electron cloud single-bunch
head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop
on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba,
Ital
ELECTRON CLOUD MODELING FOR THE ILC DAMPING RINGS
Abstract Electron cloud buildup is a primary concern for the performance of the damping rings under development for the International Linear Collider. We have performed synchrotron radiation rate calculations for the recent 3.2-km DSB3 2 lattice design using the SYNRAD utility in the Bmad accelerator software library. These results are then used to supply input parameters to the electron cloud modeling package ECLOUD. Contributions to coherent tune shifts from the field-free sections, and from the dipole and quadrupole magnets have been calculated, as well as the effect of installing solenoid windings in the field-free regions. For each element type, SYNRAD provides ring occupancy, average beam sizes, beta function values, and beta-weighted photon rates for the coherent tune shift calculation. An approximation to the antechamber design has been implemented in ECLOUD as well, moving the photoelectron source points to the edges of the antechamber entrance and removing cloud particles which enter the antechamber
Status of Schottky Diagnostics in the ANKA Storage Ring
The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed
Recommended from our members
Microwave Transmission Measurements of the Electron Cloud Density In The Positron Ring of PEP-II
Clouds of electrons in the vacuum chambers of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We applied a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave which is independently excited and transmitted over a straight section of the accelerator. The modulation in the wave transmission which appear to increase in depth when the clearing solenoids are switched off, seem to be directly correlated to the electron cloud density in the section. Furthermore, we expect a larger phase shift of a wave transmitted through magnetic dipole field regions if the transmitted wave couples with the gyration motion of the electrons. We have used this technique to measure the average electron cloud density (ECD) specifically for the first time in magnetic field regions of a new 4-dipole chicane in the positron ring of the PEP-II collider at SLAC. In this paper we present and discuss the measurements taken in the Low Energy Ring (LER) between 2006 and 2008
Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane
The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes
Recommended from our members
Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST
To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic beams with electron cloud by orders of magnitude. The computational cost of the fully self-consistent mode is then predicted to be comparable to that of the quasi-static mode, assuming that several stations per betatron period are needed. During the workshop, there was some debate about the number of stations per betatron period that are needed when using the quasi-static mode. The argument was made that if there is less than one station per betatron period, then artificial resonances can be triggered and the resulting emittance growth provides an upper bound. The emittance growth thus obtained will fall either above or below the operational requirements of the machine. In the latter case, one can conclude that the electron effect that has been simulated is of no concern. However, if the emittance growth that was obtained is above the threshold, then the results become inconclusive, and simulations which resolve the betatron motion are then needed. In this case, according to [10], the fully self-consistent approach becomes an option. The aim of this paper is to investigate whether this option is indeed practical
- …