25 research outputs found

    Induction of viable but nonculturable state in Staphylococcus aureus biofilms obtained in vitro

    No full text
    Staphylococcus aureus è uno dei più importanti patogeni umani. Può causare patologie di diversa gravità, tossinfezioni alimentari ed infezioni sistemiche. Molti ceppi sono capaci di sviluppare biofilm, cioè una matrice esopolisaccaridica (slime) adesa ad una superficie, all’interno della quale rimangono inglobati i microrganismi produttori. Gli stafilococchi produttori di biofilm sono frequentemente coinvolti nelle infezioni associate all’uso di dispositivi medici impiantabili, come cateteri venosi centrali. Tali infezioni risultano difficili da eradicare in quanto i batteri risultano protetti sia dai sistemi di difesa dell’ospite che dalla terapia antibiotica. All’interno del biofilm, al contempo, i microrganismi trovano condizioni ambientali sfavorevoli come la carenza di ossigeno e di nutrienti in grado di indurre la trasformazione in forme quiescenti, tra cui lo stato VBNC (Viable But NonCulturable). Le forme VBNC rappresentano una strategia di sopravvivenza delle cellule batteriche non sporulanti sottoposte a stress ambientali, come variazioni di temperatura, luce solare, concentrazione di ossigeno e carenza di nutrienti. Sono caratterizzate da assenza di coltivabilità nei classici terreni di coltura, attività metabolica ridotta, modificazioni morfo-funzionali e dalla capacità di recuperare la capacità replicativa (resuscitation), quando le condizioni tornano favorevoli. Sono state descritte per diverse specie, soprattutto ambientali, ed anche per patogeni umani, ma la possibilità per gli stafilococchi di entrare in uno stato VBNC non è stata mai dimostrata. Questa attività di ricerca è stata rivolta a valutare la possibilità che S. aureus possa entrare in uno stato vitale ma non coltivabile, capace di resuscitation, quando si trova all’interno di biofilm. A tale scopo sono stati allestiti modelli di biofilm in vitro del ceppo S. aureus 10850 (forte produttore di slime) e in parallelo di S. aureus ATCC 25923 (non produttore di slime) e sottoposti a condizioni di stress, in particolare carenza di nutrienti associata o meno alla presenza di vancomicina, synercid o daptomicina (antibiotici utilizzati per contrastare le infezioni gravi sostenute da S. aureus) in concentrazioni pari o superiori (4x, 8x, 16x) alla minima inibente (MIC). La presenza di cellule vitali nei campioni non più coltivabili è stata valutata mediante microscopia in epifluorescenza e citometria a flusso dopo colorazione live-dead con i fluorocromi SYBR Green I e Ioduro di propidio; la capacità di espressione genica delle forme VBNC rilevate è stata analizzata mediante saggi di RT-PCR e Real-time RT-PCR specifici per il 16SrDNA batterico e per i geni glsF e nuc, il primo housekeeping specie-specifico per S. aureus e il secondo codificante per un fattore di virulenza. E’ stata inoltre valutata la possibilità delle forme VBNC di recuperare l’attività replicativa (resuscitation) ricreando condizioni di crescita favorevoli. I risultati ottenuti hanno dimostrato che (i) S. aureus è in grado di entrare in uno stato VBNC, ma solo all’interno di biofilm. Infatti forme VBNC sono state ottenute solo con il ceppo produttore di biofilm S. aureus 10850, mentre non è stato possibile rilevare la presenza di cellule vitali ma non coltivabili di S. aureus ATCC 25923; ii) condizioni di starvation in presenza di basse concentrazioni di vancomicina, synercid o daptomicina possono indurre lo stato VBNC; (iii) nello stato non coltivabile le cellule di S. aureus mantengono un’attività metabolica, come dimostrato dall’espressione di tutti i geni analizzati e che (iv) le forme VBNC di S. aureus sono in grado di riacquisire la capacità replicativa se poste in presenza di terreni di coltura addizionati di metaboliti essenziali per lo sviluppo cellulare, come il piruvato di sodio o il filtrato di una brodocoltura del ceppo wild-type S. aureus 10850. Questi risultati indicano che le forme VBNC di stafilococco potrebbero avere un ruolo rilevante in patologia umana in quanto capaci di rimanere latenti, e non evidenziabili con i comuni test colturali, all’interno del biofilm, ed essere causa di infezioni ricorrenti in seguito al recupero della piena attività metabolica e della conseguente capacità di moltiplicarsi

    Antibiotic-Resistant Enterococci in Seawater and Sediments from a Coastal Fish Farm

    No full text
    none5The aim of this study was to detect and characterize antibiotic-resistant enterococci in seawater and sediment from a Mediterranean aquaculture site where no antibiotics are used. Colonies (650) grown on Slanetz-Bartley (SB) agar were amplified on antibiotic-supplemented SB, and erythromycin (ERY), tetracycline (TET), and ampicillin (AMP) MICs were determined. Of 75 resistant isolates (17 to TET, 5 to ERY, and 45 to AMP), 5 Enterococcus faecalis, 25 E. faecium, 5 E. casseliflavus, 1 E. gallinarum, 1 E. durans, and 23 Enterococcus spp. were identified by genus- and species-specific polymerase chain reaction (PCR). tet(M), tet(O), tet(L), tet(K), erm(B), erm(A), erm(C), mef, msr, blaZ, and int(Tn916) were sought by PCR, including an improved multiplex PCR assay targeting tet(M), tet(L), and erm(B). Tet(M) was the most frequent TET resistance gene; msr(C) was the sole ERY resistance gene detected. blaZ was found in 29/45 AMP-resistant isolates; however, no b-lactamase production was detected. Antibiotic-resistant enterococci were recovered 2km off the coast despite the absence of selective pressure exerted by antibiotic use. The occurrence of resistant strains in the absence of the tested genes may indicate the presence of less common resistance determinants. This first evidence of resistant enterococci at a Mediterranean aquaculture site suggests the existence of a marine reservoir of antibiotic resistances potentially transmissible to virulent strains that could be affected by mariculture in an antibiotic-independent manner.Andrea Di Cesare;Carla Vignaroli;Gian Marco Luna;Sonia Pasquaroli;Francesca BiavascoDI CESARE, Andrea; Vignaroli, Carla; Gian Marco, Luna; Pasquaroli, Sonia; Biavasco, Francesc

    Aquaculture Can Promote the Presence and Spread of Antibiotic-Resistant Enterococci in Marine Sediments

    Get PDF
    Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside) collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M), tet(L), tet(O)] and macrolide [erm(A), erm(B) and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M) and tet(L) in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin) highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O), erm(B) and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an underestimated health risk and deserves further investigation. \uc2\ua9 2013 Di Cesare et al

    Epidemic Escherichia coli ST131 and Enterococcus faecium ST17 in coastal marine sediments from an Italian beach

    No full text
    Fecal indicator bacteria (FIB) are used worldwide to assess water quality in coastal environments, but little is known about their genetic diversity and pathogenicity. This study examines the prevalence, antimicrobial resistance, virulence, and genetic diversity of FIB isolated from marine sediments from a central Adriatic seaside resort. FIB, recovered from 6 out of 7 sites, were significantly more abundant at sampling stations 300 m offshore than close to the shore. Escherichia coli accounted for 34.5% of fecal coliforms, and Enterococcus faecalis accounted for 32% of enterococci. Most isolates (27% of E. coli and 22% of enterococci) were recovered from the sediments that had the highest organic content. Multidrug-resistant E. coli (31%) and enterococci (22%) were found at nearly all sites, whereas 34.5% of E. coli and 28% of enterococci harboring multiple virulence factors were recovered from just two sites. Pulsed-field gel electrophoresis typing showed wide genetic diversity among isolates. Human epidemic clones ( E. coli ST131 and Enterococcus faecium ST17) were identified for the first time by multilocus sequence typing in an area where bathing had not been prohibited. These clones were from sites far removed from riverine inputs, suggesting a wide diffusion of pathogenic FIB in the coastal environment and a high public health risk

    Role of Daptomycin in the Induction and Persistence of the Viable but Non-Culturable State of Staphylococcus Aureus Biofilms

    No full text
    We have recently demonstrated that antibiotic pressure can induce the viable but non-culturable (VBNC) state in Staphylococcus aureus biofilms. Since dormant bacterial cells can undermine anti-infective therapy, a greater understanding of the role of antibiotics of last resort, including daptomycin, is crucial. Methicillin-resistant S. aureus 10850 biofilms were maintained on non-nutrient (NN) agar in the presence or absence of the MIC of daptomycin until loss of culturability. Viable cells were monitored by epifluorescence microscopy and flow cytometry for 150 days. All biofilms reached non-culturability at 40 days and showed a similar amount of viable cells; however, in biofilms exposed to daptomycin, their number remained unchanged throughout the experiment, whereas in those maintained on NN agar alone, no viable cells were detected after 150 days. Gene expression assays showed that after achievement of non-culturability, 16S rDNA and mecA were expressed by all biofilms, whereas glt expression was found only in daptomycin-exposed biofilms. Our findings suggest that low daptomycin concentrations, such as those that are likely to obtain within biofilms, can influence the viability and gene expression of non-culturable S. aureus cells. Resuscitation experiments are needed to establish the VBNC state of daptomycin-exposed biofilms

    Antibiotic and heavy metal resistance in enterococci from coastal marine sediment

    No full text
    Sediment samples from three coastal sites - two beach resorts (Beach 1 and Beach 2 sites) and an area lying between an oil refinery and a river estuary (Estuarine site) - were analyzed for antibiotic- and heavy metal (HM)-resistant enterococci. A total of 123 enterococci, 36 E. faecium, 34 E. casseliflavus, 33 E. hirae, 5 E. faecalis, 3 E. durans, 3 E. gallinarum, and 9 Enterococcus spp, were recovered. Strains resistant to erythromycin, tetracycline and quinupristin/dalfopristin (Q/D) were recovered from all sites, whereas multidrug-resistant isolates were recovered only from “Beach 2” (14%) and “Estuarine” (3.7%). As regards HM resistance, the strains showed a high frequency (68%) of cadmium and/or copper resistance and uniform susceptibility to mercury. The prevalence of cadmium-resistant strains was significantly higher among erythromycin-resistant than among erythromycin-susceptible strains. A significant association between cadmium or copper resistance and Q/D resistance was also observed at “Estuarine” site. The levels of the two HMs in sediment from all sites were fairly low, ranging from 0.070 to 0.126 μg/g, for cadmium and from 1.00 to 7.64 μg/g for copper. Mercury was always undetectable. These findings are consistent with reports that low HM concentrations may contribute to co-selection of antibiotic-resistant bacterial strains, including enterococci

    The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains

    No full text
    To gain insights into the relationships and the genetic exchange among environmental and clinical enterococci, 59 strains (29 from marine aquaculture sites and 30 from clinical settings) resistant to tetracycline, erythromycin, ampicillin and/or gentamicin were analysed for the antibiotic resistance tet(M), tet(L), tet(O), erm(A), erm(B), mef blaZ, aac(6')-Ie aph(2″)-Ia and virulence gelE, cylB, efaA and esp genes, and for the copper resistance gene tcrB. Antibiotic resistance and virulence genes were detected more frequently in clinical than in environmental enterococci; the opposite was true for copper resistance. Conjugation experiments demonstrated the transfer of antibiotic resistance genes from marine to clinical enterococci in interspecific mating and the uncommon joint transfer of tet(L) and erm(B). Enterobacterial repetitive intergenic consensus polymerase chain reaction typing evidenced a cluster (90% similarity) encompassing strains carrying multiple antibiotic resistance genes from both sets; the others marine isolates exhibited polyclonality and bore tcrB. Our results demonstrate that antibiotic-resistant marine enterococci bear antibiotic resistance genes transferable to humans and suggest that copper resistance, not observed among clinical strains, may be useful for survival in the environment, whereas virulence genes likely confer no advantage to enterococcal populations adapted to a lifestyle outside the host

    Role of daptomycin in the induction and persistence of the viable but non-culturable state of Staphylococcus Aureus biofilms

    No full text
    We have recently demonstrated that antibiotic pressure can induce the viable but non-culturable (VBNC) state in Staphylococcus aureus biofilms. Since dormant bacterial cells can undermine anti-infective therapy, a greater understanding of the role of antibiotics of last resort, including daptomycin, is crucial. Methicillin-resistant S. aureus 10850 biofilms were maintained on non-nutrient (NN) agar in the presence or absence of the MIC of daptomycin until loss of culturability. Viable cells were monitored by epifluorescence microscopy and flow cytometry for 150 days. All biofilms reached non-culturability at 40 days and showed a similar amount of viable cells; however, in biofilms exposed to daptomycin, their number remained unchanged throughout the experiment, whereas in those maintained on NN agar alone, no viable cells were detected after 150 days. Gene expression assays showed that after achievement of non-culturability, 16S rDNA and mecA were expressed by all biofilms, whereas glt expression was found only in daptomycin-exposedbiofilms. Our findings suggest that low daptomycin concentrations, such as those that are likely to obtain within biofilms, can influence the viability and gene expression of non-culturable S. aureus cells. Resuscitation experiments are needed to establish the VBNC state of daptomycin-exposed biofilms

    The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains

    No full text
    To gain insights into the relationships and the genetic exchange among environmental and clinical enterococci, 59 strains (29 from marine aquaculture sites and 30 from clinical settings) resistant to tetracycline, erythromycin, ampicillin and/or gentamicin were analysed for the antibiotic resistance tet(M), tet(L), tet(O), erm(A), erm(B), mef blaZ, aac(6\ue2\u80\ub2)-Ie aph(2\ue2\u80\ub3)-Ia and virulence gelE, cylB, efaA and esp genes, and for the copper resistance gene tcrB. Antibiotic resistance and virulence genes were detected more frequently in clinical than in environmental enterococci; the opposite was true for copper resistance. Conjugation experiments demonstrated the transfer of antibiotic resistance genes from marine to clinical enterococci in interspecific mating and the uncommon joint transfer of tet(L) and erm(B). Enterobacterial repetitive intergenic consensus polymerase chain reaction typing evidenced a cluster (90% similarity) encompassing strains carrying multiple antibiotic resistance genes from both sets; the others marine isolates exhibited polyclonality and bore tcrB. Our results demonstrate that antibiotic-resistant marine enterococci bear antibiotic resistance genes transferable to humans and suggest that copper resistance, not observed among clinical strains, may be useful for survival in the environment, whereas virulence genes likely confer no advantage to enterococcal populations adapted to a lifestyle outside the host. \uc2\ua9 2013 Society for Applied Microbiology and John Wiley & Sons Ltd

    Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: a validation study

    No full text
    Abstract Background Routine culture-based diagnosis of Pseudomonas aeruginosa lung infection in Cystic Fibrosis (CF) patients can be hampered by the phenotypic variability of the microorganism, including its transition to a Viable But Non-Culturable (VBNC) state. The aim of this study was to validate an ecfX-targeting qPCR protocol developed to detect all viable P. aeruginosa bacteria and to identify VBNC forms in CF sputum samples. Methods The study involved 115 P. aeruginosa strains of different origins and 10 non-P. aeruginosa strains and 88 CF sputum samples, 41 Culture-Positive (CP) and 47 Culture-Negative (CN). Spiking assays were performed using scalar dilutions of a mixture of live and dead P. aeruginosa ATCC 9027 and a pooled P. aeruginosa-free sputum batch. Total DNA from sputum samples was extracted by a commercial kit, whereas a crude extract was obtained from the broth cultures. Extracellular DNA (eDNA) interference was evaluated by comparing the qPCR counts obtained from DNase-treated and untreated aliquots of the same samples. The statistical significance of the results was assessed by the Wilcoxon test and Student’s t test. Results The newly-developed qPCR protocol identified 96.6% of the P. aeruginosa isolates; no amplification was obtained with strains belonging to different species. Spiking assays supported protocol reliability, since counts always matched the amount of live bacteria, thus excluding the interference of dead cells and eDNA. The protocol sensitivity threshold was 70 cells/ml of the original sample. Moreover, qPCR detected P. aeruginosa in 9/47 CN samples and showed higher bacterial counts compared with the culture method in 10/41 CP samples. Conclusions Our findings demonstrate the reliability of the newly-developed qPCR protocol and further highlight the need for harnessing a non-culture approach to achieve an accurate microbiological diagnosis of P. aeruginosa CF lung infection and a greater understanding of its evolution
    corecore