10 research outputs found

    Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions

    No full text
    The aim of the study was to prepare effective low-cost green adsorbents based on spent black tea leaves for the removal of nitrate ions from aqueous solutions. These adsorbents were obtained either by thermally treating spent tea to produce biochar (UBT-TT), or by employing the untreated tea waste (UBT) to obtain convenient bio-sorbents. The adsorbents were characterized before and after adsorption by Scanning Electron Microscopy (SEM), Energy Dispersed X-ray analysis (EDX), Infrared Spectroscopy (FTIR), and Thermal Gravimetric Analysis (TGA). The experimental conditions, such as pH, temperature, and nitrate ions concentration were studied to evaluate the interaction of nitrates with adsorbents and the potential of the adsorbents for the nitrate removal from synthetic solutions. The Langmuir, Freundlich and Temkin isotherms were applied to derive the adsorption parameters based on the obtained data. The maximum adsorption intakes for UBT and UBT-TT were 59.44 mg/g and 61.425 mg/g, respectively. The data obtained from this study were best fitted to the Freundlich adsorption isotherm applied to equilibrium (the values R2 = 0.9431 for UBT and R2 = 0.9414 for UBT-TT), this assuming the multi-layer adsorption onto a surface with a finite number of sites. The Freundlich isotherm model could explain the adsorption mechanism. These results indicated that UBT and UBT-TT could serve as novel biowaste and low-cost materials for the removal of nitrate ions from aqueous solutions

    Cardioprotective Effects Induced by Preconditioning with Halogenated Anesthetics

    No full text
    Background: Numerous studies discuss the protective effects of halogenated anesthetics on myocyte injury induced by the ischemia-reperfusion syndrome of the heart. This mechanism is known as pharmacological preconditioning

    Cannabis Sativa Revisited—Crosstalk between microRNA Expression, Inflammation, Oxidative Stress, and Endocannabinoid Response System in Critically Ill Patients with Sepsis

    No full text
    Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression

    A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

    No full text
    The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient

    Use of Circulating and Cellular miRNAs Expression in Forensic Sciences

    No full text
    The current practice in the field of forensic medicine imposes the use of modern investigation techniques. The complexity of laboratory investigation methods needed for a final result of the investigation in forensic medicine needed new biomarkers of higher specificity and selectivity. Such biomarkers are the microRNAs (miRNAs), short, non-coding RNAs composed of 19–24 nucleotides. Their characteristics, such as high stability, selectivity, and specificity for biological fluids, differ from tissue to tissue and for certain pathologies, turning them into the ideal candidate for laboratory techniques used in forensic medicine. In this paper, we wish to highlight the biochemical properties and the usefulness of miRNAs in forensic medicine

    Synthesis, Purity Check, Hydrolysis and Removal of <i>o</i>-Chlorobenzyliden Malononitrile (CBM) by Biological Selective Media

    No full text
    The removal yield of organic substances present in water depends on the environmental conditions, on the chemical composition of the water and on the chemical substance dissolved in the water, which constitutes the substrate of the metabolic activities of the microalgae that use these substances in the biochemical reactions of cellular enzyme complexes. o-Chlorobenzylidene malononitrile (CS, to use its military designation) was synthesized in-house, for research purposes, by a condensing reaction between o-chlorobenzaldehide and malononitrilein the presence of diethylamine. The detection, identification and confirmation of o-chlorobenzylidenemalononitrile (coded CBM in this experimental study) was performed using gas chromatography–mass spectrometry (GC-MS) and the purity of CBM was 99%. The biodegradation capacity in the samples that contained the biological suspension, after 24 h and 96 h of incubation, was determined via GC-MS analysis, and no evidence of the presence of CBM or some metabolites of CBM was detected. In the parallel samples, a hydrolysis process of CBM at room temperature, without biological treatment, revealed two main metabolites, malononitrile and o-chlorobenzaldehyde, respectively. This study is focused on evaluating the biodegradation capacity of o-chlorobenzylidene malononitrile in the presence of a biological material, culture of Chlorella sp., in comparison with a classical hydrolysis process. The tests performed indicate that the suspension of Chlorella sp. consumed the entire amount of CBM and metabolites from the analyzed samples. The tests prove that the biological material can be used to decontaminate the affected areas

    MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients

    No full text
    A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status

    The Impact of General Anesthesia on Redox Stability and Epigenetic Inflammation Pathways: Crosstalk on Perioperative Antioxidant Therapy

    No full text
    Worldwide, the prevalence of surgery under general anesthesia has significantly increased, both because of modern anesthetic and pain-control techniques and because of better diagnosis and the increased complexity of surgical techniques. Apart from developing new concepts in the surgical field, researchers and clinicians are now working on minimizing the impact of surgical trauma and offering minimal invasive procedures due to the recent discoveries in the field of cellular and molecular mechanisms that have revealed a systemic inflammatory and pro-oxidative impact not only in the perioperative period but also in the long term, contributing to more difficult recovery, increased morbidity and mortality, and a negative financial impact. Detailed molecular and cellular analysis has shown an overproduction of inflammatory and pro-oxidative species, responsible for augmenting the systemic inflammatory status and making postoperative recovery more difficult. Moreover, there are a series of changes in certain epigenetic structures, the most important being the microRNAs. This review describes the most important molecular and cellular mechanisms that impact the surgical patient undergoing general anesthesia, and it presents a series of antioxidant therapies that can reduce systemic inflammation

    Analysis of oxidative stress-related markers in critically ill polytrauma patients: An observational prospective single-center study

    No full text
    Critically ill polytrauma patients have increased production of free radicals (FRs) and consequent alterations in biochemical pathways, as well as disruption of cellular integrity, due to increased lipid peroxidation. The aim of this study was to investigate several biomarkers associated with increased oxidative stress in critically ill polytrauma patients, and to evaluate the effect of antioxidant treatment on the clinical outcome in these patients. A total of 67 polytrauma patients from an intensive care unit met the selection criteria. Antiox group included 35/67 patients who received antioxidant therapy, while 32/67 patients without antioxidant treatment were considered as control group. Antioxidant therapy consisted of simultaneous administration of Vitamin C (sodium ascorbate) and N-acetylcysteine, through continuous intravenous infusion. Clinical and paraclinical evaluation of the patients was performed daily until discharge or death. At admission, laboratory parameters did not differ significantly between two groups. At discharge/upon death, statistically significant differences in favor of Antiox group were observed in the following parameters: thrombocytes, activated partial thromboplastin time, prothrombin time, total bilirubin, total cholesterol, high-density lipoproteins, low-density lipoproteins, erythrocyte sedimentation rate, interleukin 6 (all p = 0.0001), total protein (p = 0.0005), serum albumin (p = 0.0004), lactate dehydrogenase (p = 0.0006), and C-reactive protein (p = 0.0014). Starting from day 5, the APACHE II score was significantly decreased in Antiox versus control group (p < 0.05). Finally, the sepsis incidence and mortality rate were significantly lower in Antiox group (p < 0.05). Decreasing the level of oxidative stress by antioxidant substances significantly correlated with a better prognosis and outcome in our patients. Further studies should elucidate more clearly the mechanism of action of antioxidants in critically ill polytrauma patients
    corecore