3 research outputs found

    Progress in the Application of Biomimetic Mineralization for Tooth Repair

    No full text
    The tooth, including enamel and dentin, is a prominent biomineral that is produced by the biomineralization of living organisms. Although the mechanical performance of the tooth is outstanding, caries easily develop in a complex oral environment. The analysis of the chemical composition and the relationship between the mechanical properties and the structure is of great importance in solving caries. In this review, the multilevel structure and mechanical properties of enamel and dentin are briefly introduced, along with caries formation and the limitations of clinical dental restoration. Furthermore, the progress of the application of a wide range of biomimetic strategies for tooth remineralization is highlighted, including the use of calcium phosphate ionic clusters to construct the mineralization front, ensuring the oriented epitaxial growth of enamel crystals and replicating the complex structure of the enamel. Moreover, compared with the current clinical treatment, in which the resin composite and glass ionomer cement are the main repair materials and the high incidence of secondary caries leads to imperfect restorations, the remineralization tactics could achieve excellent repair effectiveness in reconstructing the complicated structure, restoring mechanical strength and gaining permanent repair. A basic understanding of enamel and dentin, their potential for restoration, and hopeful prospects for tooth repair that can be applied in the clinical setting, not just in the laboratory, is provided by this review

    An Integrated Experimental-Computational Investigation of Connected Spaces as Natural Ventilation Typologies

    No full text
    This paper investigates the impact of spatial composition on the effectiveness of passive cooling by natural ventilation in a comparative study of the conical roofed Harran houses in Turkey and a passive solar home in the Midwest of the United States. While the projects are distinct and are situated in two extreme climate zones (hot and arid and continental humid) both projects have in common open variable configurations of multiple interconnected spaces. Computational fluid dynamics (CFD) simulations using OpenFoam were used to investigate the fundamental airflow characteristics and the resulting interior temperature and velocity profiles. The simulations were initialized as well as validated with measured field data. Subsequently, we tested the impact of the interconnected spatial composition of the buildings on their cooling potentials. This was accomplished by simulating variations of the spatial connections with reduced flow path connectivity compared to the original validated cases. Preliminary results regarding changes in temperature and air velocity show higher temperatures and lower velocities in the less connected cell-like spaces and indicate the importance of spatial connectivity for effective cooling by natural ventilation based on variable interaction of vents and flow path.This conference proceeding is published as Ulrike Passe, Mirka Deza, Baskar Ganapathysubramanian, Shan He, Kyle Vansice, Songzhe Xu2, An Integrated Experimental-Computational Investigation of Connected Spaces as Natural Ventilation Typologies. at the 2016 Proceedings of the Symposium on Simulation for Architecture and Urban Design. London United Kingdom, May 16-18, 2016; Session 1; 59-66. Posted with permission.</p
    corecore