238 research outputs found

    An Efficient ΣΔ-STAP Detector for Radar Seeker using RPCA Post-processing

    Get PDF
    Adaptive detection of moving targets in sea clutter environment is considered as one of the crucial tasks for radar seekers. Due to the severe spreading of the sea clutter spectrum, the ability of space-time adaptive processing with sum and difference beams (ΣΔ-STAP) algorithms to suppress the sea clutter is very limited. This paper, investigated the low-rank property of the range-Doppler data matrix according to the eigenvalue distribution from the eigen spectrum, and proposed an efficient ΣΔ-STAP detector based on the robust principle component analysis (RPCA) algorithm to detect moving targets, which meets the low-rank matrix recovery conditions. The proposed algorithm first adopts ΣΔ-STAP algorithm to preprocess the sea clutter, then separates the sparse matrix of target component from the range-Doppler data matrix through the RPCA algorithm, and finally, effectively detects moving targets in the range-Doppler plane. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm in the low signal-to-noise ratio scenarios.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 344-349, DOI:http://dx.doi.org/10.14429/dsj.64.486

    Federated Learning over a Wireless Network: Distributed User Selection through Random Access

    Full text link
    User selection has become crucial for decreasing the communication costs of federated learning (FL) over wireless networks. However, centralized user selection causes additional system complexity. This study proposes a network intrinsic approach of distributed user selection that leverages the radio resource competition mechanism in random access. Taking the carrier sensing multiple access (CSMA) mechanism as an example of random access, we manipulate the contention window (CW) size to prioritize certain users for obtaining radio resources in each round of training. Training data bias is used as a target scenario for FL with user selection. Prioritization is based on the distance between the newly trained local model and the global model of the previous round. To avoid excessive contribution by certain users, a counting mechanism is used to ensure fairness. Simulations with various datasets demonstrate that this method can rapidly achieve convergence similar to that of the centralized user selection approach

    DBQ-SSD: Dynamic Ball Query for Efficient 3D Object Detection

    Full text link
    Many point-based 3D detectors adopt point-feature sampling strategies to drop some points for efficient inference. These strategies are typically based on fixed and handcrafted rules, making difficult to handle complicated scenes. Different from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features, and assign the feature transform with suitable receptive field for each selected point. It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost. Extensive experiments demonstrate that our method can reduce latency by 30%-60% on KITTI and Waymo datasets. Specifically, the inference speed of our detector can reach 162 FPS and 30 FPS with negligible performance degradation on KITTI and Waymo datasets, respectively
    • …
    corecore