1 research outputs found

    Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhances lipid production in Synechocystis sp PCC 6803

    No full text
    The overexpression of native plsX and plsC genes involving in fatty acid/phospholipid synthesis first timely-reported the significantly enhanced lipid contents in Synechocystis sp. PCC 6803. Growth rate, intracellular pigment contents including chlorophyll a and carotenoids, and oxygen evolution rate of all overexpressing (OX) strains were normally similar as wild type. For fatty acid compositions, saturated fatty acid, in particular palmitic acid (16:0) was dominantly increased in OX strains whereas slight increases of unsaturated fatty acids were observed, specifically linoleic acid (18:2) and alpha-linolenic acid (18:3). The plsC/plsX-overexpressing (OX + XC) strain produced high lipid content of about 24.3% w/dcw under normal condition and was further enhanced up to 39.1% w/dcw by acetate induction. This OX + XC engineered strain was capable of decreasing phaA transcript level which related to poly-3-hydroxybutyrate (PHB) synthesis under acetate treatment. Moreover, the expression level of gene transcripts revealed that the plsX-and plsC/plsX-overexpression strains had also increased accA transcript amounts which involved in the irreversible carboxylation of acetyl-CoA to malonyl-CoA. Altogether, these overexpressing strains significantly augmented higher lipid contents when compared to wild type by partly overcoming the limitation of lipid production
    corecore