17 research outputs found

    Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process

    No full text
    Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H2O2) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H2O2 accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming. (C) 2013 Published by Elsevier Masson SAS

    Differential responses of Mimusops elengi and Manilkara zapota seeds and embryos to cryopreservation

    No full text
    Several dehydration protocols were evaluated for their ability to cryopreserve intact seeds and excised embryonic axes of Mimusops elengi and Manilkara zapota (Sapotaceae). Both interspecific and intraspecific variations in cryotolerance were found. M. zapota embryonic axes were more tolerant of cryopreservation than those of M. elengi, and showed higher desiccation tolerance, higher post-thawing survival and development, and a much wider range of moisture contents for cryopreservation. Maximum development rates were 94% and 27% for M. zapota and M. elengi, respectively. Intact seeds of both species tolerated desiccation to low moisture levels, but were sensitive to liquid nitrogen exposure, and cryopreserved seeds failed to germinate. Assessment of developing embryos excised from cryopreserved seeds associated nonviability of cotyledons and plumules with germination failure. Other structures survived at variable rates; most hypocotyls and radicles (up to 76% and 98% for M. elengi and M. zapota, respectively) were viable. The different cryotolerance between hypocotyls and cotyledons is a critical cause for failure in cryopreservation, contributing to the difficulty in developing protocols for such intermediate oily seeds

    Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds

    No full text
    Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQsynthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination. (C) 2016 Elsevier Masson SAS. All rights reserved

    Poly ADP-ribose polymerase-1 promotes seed-setting rate by facilitating gametophyte development and meiosis in rice (Oryza sativa L.)

    No full text
    Poly(ADP-ribose) polymerases (PARPs), which transfer either monomer or polymer of ADP-ribose from nicotinamide adenine dinucleotide (NAD(+)) onto target proteins, are required for multiple processes in DNA damage repair, cell cycle, development, and abiotic stress in animals and plants. Here, the uncharacterized rice (Oryza sativa) OsPARP1, which has been predicted to have two alternative OsPARP1 mRNA splicing variants, OsPARP1.1 and OsPARP1.2, was investigated. However, bimolecular fluorescence complementation showed that only OsPARP1.1 interacted with OsPARP3 paralog, suggesting that OsPARP1.1 is a functional protein in rice. OsPARP1 was preferentially expressed in the stamen primordial and pollen grain of mature stamen during flower development. The osparp1 mutant and CRISPR plants were delayed in germination, indicating that defective DNA repair machinery impairs early seed germination. The mutant displayed a normal phenotype during vegetative growth but had a lower seed-setting rate than wild-type plants under normal conditions. Chromosome bridges and DNA fragmentations were detected in male meiocytes at anaphase I to prophase II. After meiosis II, malformed tetrads or tetrads with micronuclei were formed. Meanwhile, the abnormality was also found in embryo sac development. Collectively, these results suggest that OsPARP1 plays an important role in mediating response to DNA damage and gametophyte development, crucial for rice yield in the natural environment

    Comparison of morphological features of fruits and seeds for identifying two taxonomic varieties of Spinacia oleracea L.

    No full text
    There are two taxonomic varieties of spinach (Spinacia oleracea L.), the spiny variety [S. oleracea var. spinosa (Moench)] and the spineless variety [S. oleracea var. inermis (Moench) Peterm.], based on the spines of spinach fruits. Between the two varieties, there are obvious differences in the leathery fruit coat but no significant differences in the macro-morphological appearance of seeds. Differences between the two varieties are hard to see without the fruit coat, which makes seed purity analysis difficult. In this study, the morphological structures of fruits and seeds from 31 spinach cultivars were compared. The results showed that there were significant differences in the macro-morphology of spinach fruit in terms of fruit shapes and the presence of spines, but no significant differences in the micro-morphology of the fruit surface under a scanning electron microscope (SEM) between the spineless and spiny varieties. In addition, there were no clear and stable differences between the two varieties in seed macro-morphology based on stereomicroscopy, or in the internal seed structure based on micro-computed tomography imaging. However, significant differences in seed micro-morphology could be observed under SEM, particularly for the surface reticulation of the seed coat, such as the depth of interspaces, sidewall angle, and the bottoms of interspaces. The differences in seed micro-morphology allowed for clear discrimination between the two varieties. These results provide morphological evidence for distinguishing fruits and seeds between the two spinach taxonomic varieties, and these similarities and differences can be used to classify spinach cultivars and to analyze seed purity

    Proteome changes associated with dormancy release of Dongxiang wild rice seeds

    No full text
    Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms. (C) 2016 Elsevier GmbH. All rights reserved

    Relationship between loss of desiccation tolerance and programmed cell death (PCD) in mung bean (Vigna radiata) seeds.

    No full text
    Mung bean (Vigna radiata), an important legume crop, has the property of desiccation tolerance (DT), which is lost in the final stage of germination (preimbibition, 18 h-24 h). We compared parameters related to the programmed cell death (PCD) of mung bean seeds before and after dehydration at different imbibition stages through various detection methods. The results of Evans blue and TTC staining methods showed that the dehydration process could lead to cell death. The results of optical and subcellular morphology showed that PCD occurred after dehydration. The destruction of DNA integrity and the activity changes in caspase and total nuclease in mung bean seeds after dehydration treatment indicated that the loss of desiccation tolerance was related to PCD. Dehydration resulted in the destruction of the mitochondrial structure, reversal of the membrane potential, and the entrance of cytochrome C into the cytoplasm. These processes all indicate that the mitochondrial apoptosis pathway was the main form of dehydration-induced PCD. The results of cytoplasmic Ca2+ concentration showed that Ca2+ signaling also played a role in inducing PCD, with the upstream signal being dehydration-induced changes in water potential and the downstream signal being the ROS and mitochondrial PT channel, according to the order in which these signals happened. The mitochondrial apoptosis pathway can be considered the main mechanism of dehydration-induced PCD based on our analysis of the sequence of major events in PCD. The main processes include dehydration induction, changes in Ca2+ and mitochondrial respiratory electron transport, the reversal of mitochondrial membrane potential induced by ROS and Ca2+, and the transmission and execution of PCD downstream signals induced by cytochrome C release

    Probucol ameliorates hepatic stellate cell activation and autophagy is associated with farnesoid X receptor

    No full text
    Probucol has antioxidant effects and inhibits inflammation. Farnesoid X receptor (FXR) is a nuclear receptor that regulates autophagy, which is regarded as the key cause of the activation of hepatic stellate cell (HSC). In this study, the effects of probucol on HSC activation and autophagy in vitro and vivo and the role of FXR in this progress were investigated. Results showed that probucol ameliorated hepatic fibrosis and autophagy, and increased the expression of FXR in liver in a mouse model of fibrosis induced by CCl4. And probucol could alleviate lipopolysaccharide-induced autophagy and HSC activation in vitro. In addition, probucol increased FXR expression, and the Z-guggulsterone, an antagonist of FXR, could block the effects of probucol on HSC activation and autophagy. Additionally, agonists of FXR could suppress LPS-induced autophagy and activation. These results suggest that probucol could ameliorate hepatic fibrosis, and inhibit HSC autophagy and activation, and these effects are associated with FXR. Keywords: Probucol, Hepatic fibrosis, Autophagy, Farnesoid X recepto
    corecore