25 research outputs found

    Posterior Reversible Encephalopathy Syndrome With Isolated Involving Infratentorial Structures

    Get PDF
    Typical neuroimaging findings of posterior reversible encephalopathy syndrome include symmetrical white matter edema in subcortical white matter of bilateral occipital and parietal lobes, although variations do occur and more and more attention is being focused upon disease of infratentorial-isolated involved posterior reversible encephalopathy syndrome. In this article, we described 1 case of posterior reversible encephalopathy syndrome with isolated infratentorial brain involvement and reviewed the literature to identify an additional 36 cases in the PubMed database. We used various search terms, such as “brainstem/cerebella/spinal posterior reversible encephalopathy syndrome,” “brainstem/cerebella/spinal reversible posterior leukoencephalopathy syndrome,” “brainstem/cerebella/spinal hypertensive encephalopathy,” “infratentorial posterior reversible encephalopathy syndrome,” and “posterior reversible encephalopathy syndrome variant.” Then, we systematically analyzed the clinical and imaging characteristics of the 37 cases and found that posterior reversible encephalopathy syndrome with isolated involving infratentorial structures predominantly affect male patients compared with typical posterior reversible encephalopathy syndrome. The presence of extremely high blood pressure at onset is essential to the development of infratentorial-isolated involved posterior reversible encephalopathy syndrome. A relatively high rate of hydrocephalus and spinal cord involvement can be a distinctive feature of this kind of variant. Symptoms and outcomes are basically similar to typical posterior reversible encephalopathy syndrome

    Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning

    Get PDF
    Background and aimsCuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD).MethodThe gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein–protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes.ResultsFour datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples.ConclusionOur study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD

    Analysis of Death Receptor 5 and Caspase-8 Expression in Primary and Metastatic Head and Neck Squamous Cell Carcinoma and Their Prognostic Impact

    Get PDF
    Death receptor 5 (DR5) and caspase-8 are major components in the extrinsic apoptotic pathway. The alterations of the expression of these proteins during the metastasis of head and neck squamous cell carcinoma (HNSCC) and their prognostic impact have not been reported. The present study analyzes the expression of DR5 and caspase-8 by immunohistochemistry (IHC) in primary and metastatic HNSCCs and their impact on patient survival. Tumor samples in this study included 100 primary HNSCC with no evidence of metastasis, 100 primary HNSCC with lymph node metastasis (LNM) and 100 matching LNM. IHC analysis revealed a significant loss or downregulation of DR5 expression in primary tumors with metastasis and their matching LNM compared to primary tumors with no evidence of metastasis. A similar trend was observed in caspase-8 expression although it was not statistically significant. Downregulation of caspase-8 and DR5 expression was significantly correlated with poorly differentiated tumors compared to moderately and well differentiated tumors. Univariate analysis indicates that, in HNSCC with no metastasis, higher expression of caspase-8 significantly correlated with better disease-free survival and overall survival. However, in HNSCC with LNM, higher caspase-8 expression significantly correlated with poorer disease-free survival and overall survival. Similar results were also generated when we combined both DR5 and caspase-8. Taken together, we suggest that both DR5 and caspase-8 are involved in regulation of HNSCC metastasis. Our findings warrant further investigation on the dual role of caspase-8 in cancer development

    Initial Response to Antiepileptic Drugs in Patients with Newly Diagnosed Epilepsy As a Predictor of Long-term Outcome

    No full text
    ObjectiveTo investigate the correlation between initial response to antiepileptic drugs (AEDs) and long-term outcomes after 3 years in patients with newly diagnosed epilepsy.MethodsThis prospective study included 204 patients with newly diagnosed epilepsy, who were followed-up for at least 36 months. The long-term seizure freedom at 36 months (36MSF) was evaluated in patients with seizure freedom 6 months (6MSF) or 12 months (12MSF) after initial treatment vs those with no seizure freedom after the initial 6 months (6MNSF) or 12 months (12MNSF). Univariate analysis and a multiple logistic regression model were used to analyze the association of potential confounding variables with the initial response to AEDs.ResultsThe number of patients with 36MSF was significantly higher for patients that had 6MSF (94/131, 71.8%) than those that had 6MNSF [16/73, 21.9%; χ2 = 46.862, p < 0.0001, odd ratio (OR) = 9.051]. The number of patients with 36MSF was significantly higher in patients that had 12MSF (94/118 79.7%) than those that had 12MNSF (19/86, 22.1%; χ2 = 66.720, p < 0.0001, OR = 13.811). The numbers of patients that had 36MSF were not significantly different between patients that experienced 6MSF and 12MSF or between patients that had 6MNSF and 12MNSF. Abnormalities observed in magnetic resonance imaging or computed tomography and the number of seizures before treatment correlated with poor initial 6-month response to AEDs.SignificanceThe initial 6-month response to AEDs is a valuable predictor of long-term response in patients with newly diagnosed epilepsy. The number of seizures before treatment and brain-imaging abnormalities are two prognostic predictors of initial 6-month seizure freedom

    The complete mitochondrial genome of Pheropsophus occipitalis MacLeay, 1825 (Coleoptera: Carabidae)

    No full text
    Pheropsophus occipitalis MacLeay is a predatory enemy prey heavily on agricultural pests. The length of the complete mitochondrial genome of P. occipitalis was 16,800 bp with 20.4% GC content, including 41.2% A, 11.9% C, 8.4% G, 38.5% T. The genome encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), two ribosomal RNA genes (rRNA). Phylogenetic analysis showed that P. occipitalis was clustered with Pheropsophus bimaculatus and Pheropsophus sobrinus. This study provided a scientific basis for the population genetics, phylogeny, and molecular taxonomy of P. occipitalis

    Validation of the Chinese version of the NUCOG cognitive screening tool in patients with epilepsy, dementia and other neurological disorders

    No full text
    We aimed to develop and validate a Chinese version of the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG) for use in Chinese-speaking subjects internationally. Patients and healthy controls were recruited from two hospitals between July and October 2012. Receiver operating characteristic (ROC) curves were utilized to test criterion validity. Convergent validity was assessed via correlations between NUCOG and the Mini-Mental State Examination (MMSE). Reliability was measured by internal consistency (Cronbach's a). Patients with epilepsy (n = 144), neurological diseases (n = 81), dementia (n = 44), and controls (n = 260) completed the NUCOG and the MMSE. Overall, both NUCOG and MMSE scores differed significantly across the four groups with the highest scores in the control group and the lowest in the dementia group (p < 0.0001). The NUCOG scores could differentiate between patients with certain seizure types, stroke and transient ischemic attack. Compared to the MMSE, the NUCOG exhibited a higher area under the ROC curve. The convergent validity was substantially correlated, and internal consistency was very high (0.922). The Chinese version of NUCOG was demonstrated to be a sensitive and reliable screening tool for cognitive impairment in a Chinese-speaking population not only in China, but also in countries where there is a sizeable population of ethnic Chinese. Additionally, our study also showed the NUCOG could better differentiate cognitive function in patients with certain seizure types, stroke and transient ischemic attack than the MMSE. This potentially expands the clinical usefulness of NUCOG, enabling clinicians to measure the cognitive profile of patients with epilepsy and ischemic cerebrovascular diseases

    The complete mitochondrial genome of Trictenotoma davidi Deyrolle, 1875 (Coleoptera: Trictenotomidae)

    No full text
    Trictenotoma davidi Deyrolle, 1875 is a beetle of the Trictenotomidae family. The length of the complete mitochondria genome of T. davidi was 15,910 bp with 24.1% GC content, including 39.9% A, 15.1% C, 9.0% G, and 36.0% T. The genome encoded 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. Phylogenetic analysis showed that T. davidi was closely related to Vincenzellus ruficollis. This study provided useful genetic information for the evolution of T. davidi and Trictenotomidae insects

    The complete mitochondrial genome of Arhopalus oberthuri Hua, 2002 (Coleoptera: Spondylidinae)

    No full text
    Arhopalus oberthuri is a pest which spreads in China, Laos, Japan and some other countries in Asia. The complete mitochondrial genome of A. oberthuri is 15,854 bp in length with 32.1% GC content, including 38.2% A, 20.4% C, 11.7% G, 29.7% T. There are 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA) and two ribosomal RNA genes (rRNA) encoded in the genome. The graph of phylogenetic analysis gives the information that Arhopalus oberthuri is closer to Arhopalus unicolor. This study provided a scientific basis for the population genetics, phylogeny, and molecular taxonomy of A. oberthuri
    corecore