29 research outputs found

    Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation + U approach

    No full text
    Abstract The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach. Without on-site Coulomb interactions, the band gap of m-ZrO2 is 3.60 eV, much lower than the experimental value (5.8 eV). By introducing the Coulomb interactions of 4d orbitals on Zr atom (U d) and of 2p orbitals on O atom (U p), we can reproduce the experimental value of the band gap. The calculated dielectric function of m-ZrO2 exhibits a small shoulder at the edge of the band gap in its imaginary part, while in the tetragonal ZrO2 and cubic ZrO2 it is absent, which is consistent with the experimental observations. The origin of the shoulder is attributed to the difference of electronic structures near the edge of the valence and conduction bands

    Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design

    No full text
    Selective laser melting (SLM) is a promising technique capable of rapidly fabricating customized implants having desired macro- and micro-structures by using computer-aided design models. However, the SLM-based products often have non-equilibrium microstructures and partial surface defects because of the steep thermal gradients and high solidification rates that occur during the laser melting. To meet clinical requirements, a heat treatment was used to tailor the physiochemical properties, homogenize the metallic microstructures, and eliminate surface defects, expecting to improve the cytocompatibility in vitro. Compared with the as-printed Ti–6Al–4V substrate, the heat-treated substrate had a more hydrophilic, rougher and more homogeneous surface, which should promote the early cell attachment, proliferation and osseointegration. More importantly, a crystalline rutile TiO2 layer formed during the heat treatment, which should greatly promote the biocompatibility and corrosion resistance of the implant. Compared to the untreated surfaces, the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs) on heat-treated substrates were significantly enhanced, implying an excellent cytocompatibility after annealing. Therefore, these findings provide an alternative to biofunctionalized SLM-based Ti–6Al–4V implants with optimized physiochemical properties and biocompatibility for orthopedic and dental applications

    Response of biofilms-leaves of two submerged macrophytes to high ammonium

    No full text
    Submerged macrophytes can provide attached surface for biofilms (known as periphyton) growth. In the present study, the alterations in biofilms formation, and chemical compositions and physiological responses were investigated on leaves of Vallisneria asiatica and Hydrilla verticillata exposed to 0.1 mg L-1 (control) or with 10 mg L-1 NH4+-N for 13 days. Results from physiological and biochemical indices (content of H2O2, malondialdehyde, total chlorophyll and activity of superoxide dismutase, catalase and peroxidase) showed that high ammonium caused oxidative damage to leaves of two species of plant. Multifractal analysis (based on scanning electron microscope images) showed that for the same plant, the values of width Delta alpha (Delta alpha = alpha(max)-alpha(min)) of the f(alpha) and Delta f(Delta f = f(alpha(min))-f(alpha(max))) were smaller on leaves surface of two species of plant treated with 10 mg L-1 NH4+-N for 13 days than their controls, suggesting high ammonium treatments reduced morphological heterogeneity of leaf surface and enhanced area of the colony-like biofilms. X-ray photoelectron spectroscopy analysis showed that C, O, N and P were dominant elements on leaves surface of two species of plant and ammonium application increased the percentage of C but decreased that of O. High ammonium increased Cl (C-C or C-H) percentage but decreased C2 (C-O) and C3 (O-C-O or C=O) percentage on leaves surface of two species of plant, indicating that ammonium stress changed the surface chemical states and thus might reduce the capacity of leaves to adsorb nutrients from water column. Our results provided useful information to understand ammonium induced toxicity to submerged macrophytes. (C) 2017 Elsevier Ltd. All rights reserved

    The Osteogenesis Effect and Underlying Mechanisms of Local Delivery of gAPN in Extraction Sockets of Beagle Dogs

    No full text
    A plastic and biodegradable bone substitute consists of poly (l-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process was carried out using μCT and histological analysis 12 weeks after implantation. CBCT (Cone Beam Computed Tomography) superimposition was used to characterise the effect of the different treatments on bone formation. In this study, we also explored adiponectin’s (APN) influence on primary cultured human jaw bone marrow mesenchymal stem cells gene expressions involved in the osteogenesis. We found that composite scaffolds loaded with gAPN or bone morphogenetic protein 2 (BMP2) exhibited significantly increased bone formation and mineralisation following 12 weeks in the extraction sockets of beagle dogs, as well as enhanced expression of osteogenic markers. In vitro investigation revealed that APN also promoted osteoblast differentiation of primary cultured human jaw bone marrow mesenchymal stem cells (h-JBMMSCs), accompanied by increased activity of alkaline phosphatase, greater mineralisation, and production of the osteoblast-differentiated genes osteocalcin, bone sialoprotein and collagen type I, which was reversed by APPL1 siRNA. Therefore, the composite scaffold loaded with APN exhibited superior activity for guided bone regeneration compared with blank control or Bio-Oss® (a commercially available product). The composite scaffold with APN has significant potential for clinical applications in bone tissue engineering
    corecore