146 research outputs found

    A Concise yet Effective model for Non-Aligned Incomplete Multi-view and Missing Multi-label Learning

    Full text link
    In reality, learning from multi-view multi-label data inevitably confronts three challenges: missing labels, incomplete views, and non-aligned views. Existing methods mainly concern the first two and commonly need multiple assumptions to attack them, making even state-of-the-arts involve at least two explicit hyper-parameters such that model selection is quite difficult. More roughly, they will fail in handling the third challenge, let alone addressing the three jointly. In this paper, we aim at meeting these under the least assumption by building a concise yet effective model with just one hyper-parameter. To ease insufficiency of available labels, we exploit not only the consensus of multiple views but also the global and local structures hidden among multiple labels. Specifically, we introduce an indicator matrix to tackle the first two challenges in a regression form while aligning the same individual labels and all labels of different views in a common label space to battle the third challenge. In aligning, we characterize the global and local structures of multiple labels to be high-rank and low-rank, respectively. Subsequently, an efficient algorithm with linear time complexity in the number of samples is established. Finally, even without view-alignment, our method substantially outperforms state-of-the-arts with view-alignment on five real datasets.Comment: 15 pages, 7 figure

    Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems

    Full text link
    Minimax optimization plays an important role in many machine learning tasks such as generative adversarial networks (GANs) and adversarial training. Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting where the data is distributed on multiple workers. Meanwhile, the existing decentralized minimax optimization methods rely on the strictly assumptions such as (strongly) concavity and variational inequality conditions. In the paper, thus, we propose an efficient decentralized momentum-based gradient descent ascent (DM-GDA) method for the distributed nonconvex-PL minimax optimization, which is nonconvex in primal variable and is nonconcave in dual variable and satisfies the Polyak-Lojasiewicz (PL) condition. In particular, our DM-GDA method simultaneously uses the momentum-based techniques to update variables and estimate the stochastic gradients. Moreover, we provide a solid convergence analysis for our DM-GDA method, and prove that it obtains a near-optimal gradient complexity of O(ϵ−3)O(\epsilon^{-3}) for finding an ϵ\epsilon-stationary solution of the nonconvex-PL stochastic minimax problems, which reaches the lower bound of nonconvex stochastic optimization. To the best of our knowledge, we first study the decentralized algorithm for Nonconvex-PL stochastic minimax optimization over a network.Comment: 31 page

    Convex Subspace Clustering by Adaptive Block Diagonal Representation

    Full text link
    Subspace clustering is a class of extensively studied clustering methods and the spectral-type approaches are its important subclass whose key first step is to learn a coefficient matrix with block diagonal structure. To realize this step, sparse subspace clustering (SSC), low rank representation (LRR) and block diagonal representation (BDR) were successively proposed and have become the state-of-the-arts (SOTAs). Among them, the former two minimize their convex objectives by imposing sparsity and low rankness on the coefficient matrix respectively, but so-desired block diagonality cannot neccesarily be guaranteed practically while the latter designs a block diagonal matrix induced regularizer but sacrifices convexity. For solving this dilemma, inspired by Convex Biclustering, in this paper, we propose a simple yet efficient spectral-type subspace clustering method named Adaptive Block Diagonal Representation (ABDR) which strives to pursue so-desired block diagonality as BDR by coercively fusing the columns/rows of the coefficient matrix via a specially designed convex regularizer, consequently, ABDR naturally enjoys their merits and can adaptively form more desired block diagonality than the SOTAs without needing to prefix the number of blocks as done in BDR. Finally, experimental results on synthetic and real benchmarks demonstrate the superiority of ABDR.Comment: 13 pages, 11 figures, 8 table
    • …
    corecore