41,533 research outputs found

    Wave packet transmission of Bloch electron manipulated by magnetic field

    Full text link
    We study the phenomenon of wave packet revivals of Bloch electrons and explore how to control them by a magnetic field for quantum information transfer. It is showed that the single electron system can be modulated into a linear dispersion regime by the "quantized" flux and then an electronic wave packet with the components localized in this regime can be transferred without spreading. This feature can be utilized to perform the high-fidelity transfer of quantum information encoded in the polarization of the spin. Beyond the linear approximation, the re-localization and self-interference occur as the novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde

    Quantum state swapping via qubit network with Hubbard interaction

    Full text link
    We study the quantum state transfer (QST) in a class of qubit network with on-site interaction, which is described by the generalized Hubbard model with engineered couplings. It is proved that the system of two electrons with opposite spins in this quantum network of NN sites can be rigorously reduced into NN one dimensional engineered single Bloch electron models with central potential barrier. With this observation we find that such system can perform a perfect QST, the quantum swapping between two distant electrons with opposite spins. Numerical results show such QST and the resonant-tunnelling for the optimal on-site interaction strengths.Comment: 4 pages, 3 figure

    Dimerization-assisted energy transport in light-harvesting complexes

    Full text link
    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by a quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.Comment: 11 pages, 6 figure
    • 

    corecore