322 research outputs found

    Interactions between cells or proteins and surfaces exhibiting extreme wettabilities

    Get PDF
    "First published online 12 Feb 2013 "Regulation of protein adsorption and cell adhesion on surfaces is a key aspect in the field of biomedicine and tissue engineering. Beside the general studies on hydrophilic/hydrophobic surfaces, there are both fundamental and practical interests to extend the investigation of the interaction between proteins or cells and surfaces to the two extreme wettability ranges, namely superhydrophilicity and superhydrophobicity. This review gave an overview of recent studies on proteins or cells action on these two special wettability ranges. The first part will focus on the interaction between proteins and superhydrophilic/superhydrophobic surfaces. The second part will focus on cells adhesion on these extreme wettable surfaces. Surfaces can be patterned to control in space the wettability within extreme values. As an application of such substrates, flat chips for high-throughput screening are also addressed to offer new insight on the design of a new type of bioanalysis supports.This work is supported by the National Research Fund for Fundamental Key Projects (2012CB933800) and the National Natural Science Foundation for the Youth of China (21204026)

    BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning

    Full text link
    An ever increasing number of configuration parameters are provided to system users. But many users have used one configuration setting across different workloads, leaving untapped the performance potential of systems. A good configuration setting can greatly improve the performance of a deployed system under certain workloads. But with tens or hundreds of parameters, it becomes a highly costly task to decide which configuration setting leads to the best performance. While such task requires the strong expertise in both the system and the application, users commonly lack such expertise. To help users tap the performance potential of systems, we present BestConfig, a system for automatically finding a best configuration setting within a resource limit for a deployed system under a given application workload. BestConfig is designed with an extensible architecture to automate the configuration tuning for general systems. To tune system configurations within a resource limit, we propose the divide-and-diverge sampling method and the recursive bound-and-search algorithm. BestConfig can improve the throughput of Tomcat by 75%, that of Cassandra by 63%, that of MySQL by 430%, and reduce the running time of Hive join job by about 50% and that of Spark join job by about 80%, solely by configuration adjustment

    Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface

    Get PDF
    We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely controlled between the superhydrophobic and superhydrophilic states by changing the exposure time. The ability of superhydrophilic paths to drive liquid flows in a horizontal position was found to be significantly higher than for the case of hydrophilic paths patterned onto smooth surfaces.(undefined

    High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates

    Get PDF
    We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation.This work was partially supported by Fundação para a CiĂȘncia e Tecnologia (FCT) under project PTDC/FIS/68517/2006

    Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate

    Get PDF
    Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications

    Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles

    Get PDF
    Poly(l-lactic acid) superhydrophobic surfaces prepared by a phase-separation methodology were treated with 30 min exposition of UV/O3 irradiation using hollowed masks in order to obtain patterned superhydrophilic squared-shaped areas. These wettable areas successfully confined bioactive glass nanoparticles (BG-NPs), by dispensing and drying individual droplets of BG-NPs suspensions. The obtained biomimetic chips were used to test the in vitro bioactivity of binary (SiO2–CaO) and ternary (SiO2–CaO–P2O5) nanoparticles produced using sol–gel chemistry by immersing such substrate in simulated body fluid (SBF). From SEM and EDX it was possible to conclude that the ternary system promoted an enhanced apatite deposition. This work shows the potential of using such flat disposable matrices in combinatory essays to easily evaluate the osteoconductive potential of biomaterials using small amounts of different samples.Fundação para a CiĂȘncia e a Tecnologia (FCT) - PTDC/QUI/69263/2006

    Synthesis of temperature-responsive Dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces

    Get PDF
    Purpose: To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydro- gel beads in which the bioactive substance is introduced in the particles during their formation. Methods: Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic surfaces, and the obtained millimetric spheres were hardened in a dry environment under UV light. Results: Spherical and non-sticky hydrogels particles were formed in few minutes on the superhydrophobic surfaces. The proteins included in the liquid formulation were homogeneously distributed in the particle network. The particles exhibited temperature-sensitive swelling, porosity and protein release rate, with the responsiveness tunable by the dextran-MA/PNIPAAm weight ratio.Conclusions: The proposed method permitted the preparation of smart hydrogel particles in one step with almost 100% encapsulation yield. The temperature-sensitive release profiles suggest that the obtained spherical-shaped biomaterials are suitable as protein carriers. These stimuli-responsive beads could have potential to be used in pharmaceutical or other biomedical applications, including tissue engineering and regenerative medicine.The authors acknowledge funding from the project: PTDC/QUI/68804/2006 (FCT), IBEROMARE-Procept, FEDER and MICINN (SAF2008-01679). The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement #NMP4-SL-2009-229292. The authors are grateful to project DISC REGENERATION, Collaborative Project-Large-scale integrating project, NMP3-LA-2008-213904 for the use of the UV lamp
    • 

    corecore