1,251 research outputs found
Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics
We propose an interesting scheme for distributed orbital state quantum
cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic
ensembles which consist of identical three-level atoms are trapped in distant
cavities connected by a single-mode integrated optical star coupler. These
qubits can be manipulated through appropriate modulation of the coupling
constants between atomic ensemble and classical field, and the cavity decay can
be largely suppressed as the number of atoms in the ensemble qubits increases.
The fidelity of each cloned qubit can be obtained with analytic result. The
present scheme provides a new way to construct the quantum communication
network.Comment: 5 pages, 4 figure
Z boson pair production at LHC in a stabilized Randall-Sundrum scenario
We study the Z boson pair production at LHC in the Randall-Sundrum scenario
with the Goldberger-Wise stabilization mechanism. It is shown that
comprehensive account of the Kaluza-Klein graviton and radion effects is
crucial to probe the model: The KK graviton effects enhance the cross section
of on the whole so that the resonance peak of the radion becomes
easy to detect, whereas the RS effects on the process are
rather insignificant. The and invariant-mass distributions are presented
to study the dependence of the RS model parameters. The production of
longitudinally polarized Z bosons, to which the SM contributions are
suppressed, is mainly due to KK gravitons and the radion, providing one of the
most robust methods to signal the RS effects. The sensitivity bounds
on with are also obtained such that
the effective weak scale of order 5 TeV can be experimentally
probed.Comment: 28 pages, LaTex file, 18 eps figure
Superconductivity and single crystal growth of Ni0:05TaS2
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2
single crystal was successfully grown via the NaCl/KCl flux method. The
obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly
smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and
magnetization measurements reveal that the superconductivity transition
temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The
charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in
Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux
demonstrates that NaCl/KCl flux method will be a feasible method for single
crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS
Noise-assisted preparation of entangled atoms
We discuss the generation of entangled states of two two-level atoms inside
an optical cavity. The cavity mode is supposed to be coupled to a white noise
with adjustable intensity. We describe how the entanglement between the atoms
inside the cavity arise in such a situation. The entanglement is maximized for
intermediate values of the noise intensity, while it is a monotonic function of
the spontaneous rate. This resembles the phenomenon of stochastic resonance and
sheds more light on the idea to exploit white noise in quantum information
processing.Comment: 4 pages, 4 figure
Electrical stimulation-induced cell clustering in cultured neural networks
Support: International Collaboration Program, NBS-ERC /KOSEF (Korea Science and Engineering Foundation); NIH NS-044287;
Nanobiotechnology Centre (NBTC), an STC program of the National Science Foundation under Agreement Number ECS-9876771
A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes
Air fluorescence measurements of cosmic ray energy must be corrected for
attenuation of the atmosphere. In this paper we show that the air-showers
themselves can yield a measurement of the aerosol attenuation in terms of
optical depth, time-averaged over extended periods. Although the technique
lacks statistical power to make the critical hourly measurements that only
specialized active instruments can achieve, we note the technique does not
depend on absolute calibration of the detector hardware, and requires no
additional equipment beyond the fluorescence detectors that observe the air
showers. This paper describes the technique, and presents results based on
analysis of 1258 air-showers observed in stereo by the High Resolution Fly's
Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics
Journa
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening.
The primary objective was to compare the performance of 3 different abbreviated MRI (AMRI) sets extracted from a complete gadoxetate-enhanced MRI obtained for hepatocellular carcinoma (HCC) screening. Secondary objective was to perform a preliminary cost-effectiveness analysis, comparing each AMRI set to published ultrasound performance for HCC screening in the USA.
This retrospective study included 237 consecutive patients (M/F, 146/91; mean age, 58 years) with chronic liver disease who underwent a complete gadoxetate-enhanced MRI for HCC screening in 2017 in a single institution. Two radiologists independently reviewed 3 AMRI sets extracted from the complete exam: non-contrast (NC-AMRI: T2-weighted imaging (T2wi)+diffusion-weighted imaging (DWI)), dynamic-AMRI (Dyn-AMRI: T2wi+DWI+dynamic T1wi), and hepatobiliary phase AMRI (HBP-AMRI: T2wi+DWI+T1wi during the HBP). Each patient was classified as HCC-positive/HCC-negative based on the reference standard, which consisted in all available patient data. Diagnostic performance for HCC detection was compared between sets. Estimated set characteristics, including historical ultrasound data, were incorporated into a microsimulation model for cost-effectiveness analysis.
The reference standard identified 13/237 patients with HCC (prevalence, 5.5%; mean size, 33.7 ± 30 mm). Pooled sensitivities were 61.5% for NC-AMRI (95% confidence intervals, 34.4-83%), 84.6% for Dyn-AMRI (60.8-95.1%), and 80.8% for HBP-AMRI (53.6-93.9%), without difference between sets (p range, 0.06-0.16). Pooled specificities were 95.5% (92.4-97.4%), 99.8% (98.4-100%), and 94.9% (91.6-96.9%), respectively, with a significant difference between Dyn-AMRI and the other sets (p < 0.01). All AMRI methods were effective compared with ultrasound, with life-year gain of 3-12 months against incremental costs of US$ < 12,000.
NC-AMRI has limited sensitivity for HCC detection, while HBP-AMRI and Dyn-AMRI showed excellent sensitivity and specificity, the latter being slightly higher for Dyn-AMRI. Cost-effectiveness estimates showed that AMRI is effective compared with ultrasound.
• Comparison of different abbreviated MRI (AMRI) sets reconstructed from a complete gadoxetate MRI demonstrated that non-contrast AMRI has low sensitivity (61.5%) compared with contrast-enhanced AMRI (80.8% for hepatobiliary phase AMRI and 84.6% for dynamic AMRI), with all sets having high specificity. • Non-contrast and hepatobiliary phase AMRI can be performed in less than 14 min (including set-up time), while dynamic AMRI can be performed in less than 17 min. • All AMRI sets were cost-effective for HCC screening in at-risk population in comparison with ultrasound
Generation and Utilization of Volatile Fatty Acids and Alcohols in Hydrothermally Altered Sediments in the Guaymas Basin, Gulf of California
Volatile fatty acids (VFAs) and alcohols are key intermediates of anaerobic carbon metabolism, yet their biogeochemical cycling remains poorly constrained in hydrothermal systems. We investigated the abundance, stable carbon isotopic composition, and metabolic cycling of VFAs and alcohols to elucidate their generation and utilization pathways in hydrothermally influenced sediments (4 °C to 90 °C) from the Guaymas Basin. Acetate (up to 229 μM) and methanol (up to 37 μM) were abundant in porewaters. The δ13C values of acetate varied between −35.6‰ and −18.1‰. Carbon isotopic signatures, thermodynamic predictions, and experimental incubations suggested biological sources such as fermentation and acetogenesis for acetate. Acetate and methanol were predominantly consumed by nonmethanogenic processes (e.g., sulfate reduction), as reflected in high oxidation rates versus low methanogenesis rates, and further evidenced through inhibition experiments with molybdate. These results reveal an important role for VFAs and alcohols as energy sources for diverse chemoheterotrophs in organic-rich hydrothermally influenced sediments
- …