91,610 research outputs found

    On a Conjecture of Givental

    Full text link
    These brief notes record our puzzles and findings surrounding Givental's recent conjecture which expresses higher genus Gromov-Witten invariants in terms of the genus-0 data. We limit our considerations to the case of a projective line, whose Gromov-Witten invariants are well-known and easy to compute. We make some simple checks supporting his conjecture.Comment: 13 pages, no figures; v.2: new title, minor change

    Low-frequency method for magnetothermopower and Nernst effect measurements on single crystal samples at low temperatures and high magnetic fields

    Full text link
    We describe an AC method for the measurement of the longitudinal (Sxx) and transverse (Sxy, i.e. Nernst) thermopower of mm-size single crystal samples at low temperatures (T30 T). A low-frequency (33 mHz) heating method is used to increase the resolution, and to determine the temperature gradient reliably in high magnetic fields. Samples are mounted between two thermal blocks which are heated by a sinusoidal frequency f0 with a p/2 phase difference. The phase difference between two heater currents gives a temperature gradient at 2f0. The corresponding thermopower and Nernst effect signals are extracted by using a digital signal processing method due. An important component of the method involves a superconducting link, YBa2Cu3O7+d (YBCO), which is mounted in parallel with sample to remove the background magnetothermopower of the lead wires. The method is demonstrated for the quasi two-dimensional organic conductor a-(BEDT-TTF)2KHg(SCN)4, which exhibits a complex, magnetic field dependent ground state above 22.5 T at low temperatures.Comment: 11 pages, 6 figures, 15 reference

    Enhanced toluene removal using granular activated carbon and a yeast strain candida tropicalis in bubble-column bioreactors

    Get PDF
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in abubble-column bioreactor, and the tolueneremoval efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The tolueneremoval efficiency was enhanced when granularactivatedcarbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated tolueneremoval efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m3/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m3/h at atoluene loading of 291 g/m3/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high tolueneremoval capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene

    Generation of GHZ and W states for stationary qubits in spin network via resonance scattering

    Full text link
    We propose a simple scheme to establish entanglement among stationary qubits based on the mechanism of resonance scattering between them and a single-spin-flip wave packet in designed spin network. It is found that through the natural dynamical evolution of an incident single-spin-flip wave packet in a spin network and the subsequent measurement of the output single-spin-flip wave packet,multipartite entangled states among n stationary qubits, Greenberger-Horne-Zeilinger (GHZ) and W states can be generated.Comment: 8 pages, 6 figure

    Relativistic description of nuclear matrix elements in neutrinoless double-β\beta decay

    Full text link
    Neutrinoless double-β\beta (0νββ0\nu\beta\beta) decay is related to many fundamental concepts in nuclear and particle physics beyond the standard model. Currently there are many experiments searching for this weak process. An accurate knowledge of the nuclear matrix element for the 0νββ0\nu\beta\beta decay is essential for determining the effective neutrino mass once this process is eventually measured. We report the first full relativistic description of the 0νββ0\nu\beta\beta decay matrix element based on a state-of-the-art nuclear structure model. We adopt the full relativistic transition operators which are derived with the charge-changing nucleonic currents composed of the vector coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism coupling terms. The wave functions for the initial and final nuclei are determined by the multireference covariant density functional theory (MR-CDFT) based on the point-coupling functional PC-PK1. The low-energy spectra and electric quadrupole transitions in 150{}^{150}Nd and its daughter nucleus 150{}^{150}Sm are well reproduced by the MR-CDFT calculations. The 0νββ0\nu\beta\beta decay matrix elements for both the 01+01+0_1^+\rightarrow 0_1^+ and 01+02+0_1^+\rightarrow 0_2^+ decays of 150{}^{150}Nd are evaluated. The effects of particle number projection, static and dynamic deformations, and the full relativistic structure of the transition operators on the matrix elements are studied in detail. The resulting 0νββ0\nu\beta\beta decay matrix element for the 01+01+0_1^+\rightarrow 0_1^+ transition is 5.605.60, which gives the most optimistic prediction for the next generation of experiments searching for the 0νββ0\nu\beta\beta decay in 150{}^{150}Nd.Comment: 17 pages, 9 figures; table adde
    corecore